原子晶体的应用领域

原子晶体在工业上多被用作耐磨、耐熔或耐火材料。金刚石、金刚砂都是极重要的磨料;SiO2是应用极广的耐火材料;石英和它的变体,如水晶、紫晶、燧石和玛瑙等,是工业上的贵重材料;SiC、BN(立方)、Si3N4等是性能良好的高温结构材料。......阅读全文

自然图案化新型二维原子晶体材料及其功能化进展

  石墨烯是一种由碳原子构成的蜂窝状单层结构。2004年Andre Geim和Konstantin Novoselov用剥离方法成功制备石墨烯并发现了其新奇的量子特性,2010年他们因此获得了诺贝尔物理学奖。石墨烯具有超高的载流子迁移率、超高的透光率、室温下的量子霍尔效应等优良特性,使其在电子学、光

大连化物所二维原子晶体限域生长研究取得新进展

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室在二维原子晶体限域生长及原位表征研究工作中取得新进展,相关结果发表在美国化学会的《美国化学会·纳米》上(ACS Nano; 2015, 9, 11589-11598)。  二维原子晶体及其异质结结构近年来受到广泛关注,然而该结构的可控制备是

电感耦合等离子体原子发射光谱仪的应用领域

  一.材料类  1.难熔合金的元素含量分析  2、高纯有色金属及其合金的元素微量分析  3、金属材料、电源材料、贵金属研究和生产用微量元素分析  4.电子、通讯材料及其包装材料中的有害物质元素含量检测  5.医疗器械及其包装材料中的有害物质及化学成分  二.环境与安全类  1.食具容器、包装材料的

全球首个单原子层沟道的鳍式场效应晶体管问世

  中科院金属研究所沈阳材料科学国家研究中心与国内外多家单位合作,首次演示了可阵列化、垂直单原子层沟道的鳍式场效应晶体管,相关成果于3月5日在《自然—通讯》在线发表。  过去几十年来,微电子技术产业沿摩尔定律取得了突飞猛进的发展,按照摩尔定律的预测,集成电路可容纳晶体管数目大约每两年增加一倍。为了避

首块纳米晶体“墨水”制成的晶体管问世

  晶体管是电子设备的基本元件,但其构造过程非常复杂,需要高温且高度真空的条件。美韩科学家在《科学》杂志上报告了一种新型制造方法,将液体纳米晶体“墨水”按顺序放置。他们称,这种效应晶体管或可用3D打印技术制造出来,有望用于物联网、柔性电子和可穿戴设备的研制。   据宾夕法尼亚大学官网消息,研究人员在

沉淀晶体的的分类

沉淀可分为晶形沉淀和非晶形沉淀两大类型。硫酸钡是典型的晶形沉淀,Fe2O3·nH2O是典型的非晶形沉淀。晶形沉淀内部排列较规则,结构紧密,颗粒较大,易于沉降和过滤;非晶形沉淀颗粒很小,没有明显的晶格,排列杂乱,结构疏松,体积庞大,易吸附杂质,难以过滤,也难以洗干净。

蛋白晶体高度稳定晶体框架材料问世

  近日,德国亥姆霍兹柏林研究中心和复旦大学江明院士课题组将伴刀豆球蛋白A与辅助分子(碳水化合物)以及罗丹明连接起来,帮助蛋白质对称排列,联合研究开发出了一种全新的材料——蛋白质晶体框架材料,形成高度稳定的晶体,而且形成了可控制的互穿网络。在这一过程中,碳水化合物首先与蛋白结合,然后罗丹明开始二聚

晶体定向仪晶体定向切割方法介绍

  晶体定向仪:X射线晶体定向仪利用X射线衍射原理,精密快速地测定天然和人造单晶(压电晶体,光学晶体,激光晶体,半导体晶体)的切割角度,与切割机配套可用于上述晶体的定向切割,是精密加工制造晶体器件不可缺少的仪器。该仪器广泛应用于晶体材料的研究,加工,制造行业。      各向异性是晶体的本征特性,即

大连化物所在两维原子晶体限域催化研究方面取得新进展

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室在两维原子晶体限域催化及表面催化原位表征研究方面取得新进展,相关结果发表在美国化学会的《纳米快报》上(Nano Letters;2015, 15, 3616-3623)。  近年来,该所研究员傅强、中科院院士包信和带领的研究团队利用实验室自

半导体所在hBN二维原子晶体研究方面取得系列进展

  伴随石墨烯研究的兴起,其它二维原子晶体也陆续进入人们的研究视野。其中,六方氮化硼(h-BN)逐渐成为该领域的又一亮点。高度相似的晶体结构赋予h-BN与石墨烯一些共同特性,如极高的面内弹性模量、高温稳定性、原子级平滑的表面。由于两者晶格失配很小,石墨烯可以均匀紧密地铺展在h-BN衬底上,特别是,h

半导体所在hBN二维原子晶体研究方面取得系列进展

  伴随石墨烯研究的兴起,其它二维原子晶体也陆续进入人们的研究视野。其中,六方氮化硼(h-BN)逐渐成为该领域的又一亮点。高度相似的晶体结构赋予h-BN与石墨烯一些共同特性,如极高的面内弹性模量、高温稳定性、原子级平滑的表面。由于两者晶格失配很小,石墨烯可以均匀紧密地铺展在h-BN衬底上,特别是,h

新型二维原子晶体材料及其功能化研究取得新进展

  石墨烯是一种由碳原子构成的蜂窝状单层结构。2004年,Andre Geim和Konstantin Novoselov用剥离方法成功制备石墨烯并发现了其新奇的量子特性,他们因此获得2010年诺贝尔物理学奖。石墨烯具有超高的载流子迁移率、超高的透光率、室温下的量子霍尔效应等优良特性,在电子学、光学、

电感耦合等离子体原子发射光谱仪的应用领域汇总

产品应用  一.材料类  1.难熔合金的元素含量分析;  2、高纯有色金属及其合金的元素微量分析;  3、金属材料、电源材料、贵金属研究和生产用微量元素分析  4.电子、通讯材料及其包装材料中的有害物质元素含量检测  5.医疗器械及其包装材料中的有害物质及化学成分  二.环境与安全类  1.食具容器

二维原子晶体材料中表层氧缺陷的调控及物性研究获进展

  二氧化铈(CeO2)是一种可还原氧化物材料,它可以在还原性气氛中产生表层氧缺陷,在氧化性气氛中修复氧缺陷。这种氧离子存储特性使得它在燃料电池固态电解液材料、高性能汽车尾气净化器等方面有非常好的应用前景。CeO2(111) 二维原子晶体材料(或薄膜)最表层的O-Ce-O单元层里存在着表层和亚表层两

晶体变化曲线

(1)由图知:在加热过程中,有一段的温度不变,说明这是个晶体的熔化图象,对应温度为熔点0℃,(2)此晶体的熔点是0℃,故这种晶体是冰,液态名称是水,熔化时间为7min-2min=5min.故答案为:(1)晶体熔化;0℃;(2)冰;5.

非晶体xrd

判断晶态与非晶态,如果有标准物质的话就很好办了,经过谱图检索符合那种物质的几率最大就是那种物质了,当然是不是晶态由你知道的标准物质来定.若是你合成的新的物质的话,那就应该看出的峰的情况了吧,这个不太有把握

金属晶体的物质概况

晶格结点上排列金属原子-离子时所构成的晶体。金属中的原子-离子按金属键结合,因此金属晶体通常具有很高的导电性和导热性、很好的可塑性和机械强度,对光的反射系数大,呈现金属光泽,在酸中可替代氢形成正离子等特性。主要的结构类型为面心立方最密堆积、六方密堆积和立方体心密堆积三种(见金属原子密堆积)。金属晶体

硅的晶体结构

两个面心立方结构相互套构而成,其中一个面心立方结构沿另一个的体对角线平移1/4。

金属晶体的物质特性

物理性质金属阳离子所带电荷越高,半径越小,金属键越强,熔沸点越高,硬度也是如此。例如第3周期金属单质:Al > Mg > Na,再如元素周期表中第ⅠA族元素单质:Li > Na > K > Rb > Cs。硬度最大的金属是铬,熔点最高的金属是钨。延展性当金属受到外力,如锻压或捶打,晶体的各层就会发生

光学晶体的种类介绍

卤化物单晶卤化物单晶分为氟化物单晶,溴、氯、碘的化合物单晶,铊的卤化物单晶。氟化物单晶在紫外、可见和红外波段光谱区均有较高的透过率、低折射率及低光反射系数;缺点是膨胀系数大、热导率小、抗冲击性能差。溴、氯、碘的化合物单晶能透过很宽的红外波段,其熔点低,易于制成大尺寸单晶;缺点是易潮解、硬度低、力学性

金属晶体的物质缺陷

在实际晶体中,原子排列不可能那样规则和完整,往往存在着偏离理想结构的区域。通常把晶体中原子偏离其平衡位置而出现不完整性的区域称为晶体缺陷。按晶体缺陷的几何特征可将它们分为三大类:(1)点缺陷:特点是在空间三维方向的尺寸很小,相当于原子数量级。如空位、间隙原子等。 ’(2)线缺陷:特点是在两个方向上尺

晶体面缺陷的定义

由于晶体表面处的离子或原子具有不饱和键,有很大反应活性,表面结构出现不对称性,使点阵受到很大弯曲变形,因而能量比内部能量高,是一种缺陷。

关于晶体的特性介绍

(1)自然凝结的、不受外界干扰而形成的晶体拥有整齐规则的几何外形,即晶体的自范性。(2)晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。(3)单晶体有各向异性的特点。(4)晶体可以使X光发生有规律的衍射。宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。 (5)晶体相对应的晶面

非晶体的形成条件

热力学条件熔融体是物质在熔化温度以上的一种高能量状态,随着温度的下降,根据熔体释放能量的大小不同,可以有三种冷却过程。1、结晶化。熔体中的质点进行有序排列,释放出结晶潜热,系统在凝固过程中始终处于热力学平衡的能量最低状态。2、玻璃化。质点的重新排列不能达到有序化程度,固态结构仍具有熔体远程无序的结构

离子晶体的常见类型

离子晶体有二元离子晶体、多元离子晶体与有机离子晶体等类别。强碱(NaOH、KOH、Ba(OH)2)、活泼金属氧化物(Na2O、MgO、Na2O2)、大多数盐类(BeCl₂、Pb(Ac)₂等除外)都是离子晶体。

晶体振荡器与晶体谐振器的区别

  晶振在电气上可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率为串联谐振,较高的频率为并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会

近红外光谱技术的应用领域应用领域

  天然气 烷类组成,水分,总热含量汽油  成品汽油 辛烷值 (RON、 MON), 密度, 芳烃, 烯烃, 苯含量, MTBE,  乙醇含量催化裂化汽油 辛烷值(RON、MON),PIONA(直链烷烃、异构烷烃,  芳烃,环烷烃和烯烃),馏程  重整汽油 辛烷值(RON、MON),芳烃碳数分布,馏

关于实际金属晶体的介绍

  由于原子并不处于静止状态,存在着外来原子引起的点阵畸变以及一定的缺陷,基本结构虽然仍符合上述规则性,但绝不是如设想的那样完整无缺,存在数目不同的各种形式的晶体缺陷。另外还必须指出,绝大多数工业用的金属材料不是只由一个巨大的单晶所构成,而是由大量小块晶体组成,即多晶体。在整块材料内部,每个小晶体(

非晶体的基本性质

非晶体又称无定形体内部原子或分子的排列呈现杂乱无章的分布状态的固体称为非晶体。 如玻璃、沥青、松香、塑料、石蜡、橡胶等。非晶态固体包括非晶态电介质、非晶态半导体、非晶态金属。它们有特殊的物理、化学性质。例如金属玻璃(非晶态金属)比一般(晶态)金属的强度高、弹性好、硬度和韧性高、抗腐蚀性好、导磁性强、

金属晶体的基本概念

金属晶体都是金属单质,构成金属晶体的微粒是金属阳离子和自由电子(也就是金属的价电子)。在金属晶体中,金属原子以金属键相结合。从价键法的角度看,在金属晶体中,金属原子的价电子不会只与邻近的某一金属原子以共价键结合(也没有这么多价电子与所有的邻近金属原子形成共价键),而是金属原子以其价电子公共化。