反义RNA的来源
细胞中反义RNA的来源有两种途径:第一是反向转录的产物,在多数情况下, 反义RNA是特定靶基因互补链反向转录产物, 即产生mRNA和反义RNA的DNA是同一区段的互补链。第二种来源是不同基因产物,如OMPF基因是大肠杆菌的膜蛋白基因,与透性有关,其反义基因MICFZE则为另一基因。......阅读全文
反义RNA的人工合成
既然反义RNA在原核生物中对基因表达起着重要的调控作用,那么人工设计在天然状态下不存在的反义RNA来调节靶基因的表达,想必也是可能的。这已在不少实验中得到证实。1.由于对靶mRNA的SD序列的上游区的结构了解甚少,因此,在要设计Ⅱ类反义RNA用于和靶mRNASD序列上游区结合,以期达到调节该mRNA
反义RNA的人工合成
1.由于对靶mRNA的SD序列的上游区的结构了解甚少,因此,在要设计Ⅱ类反义RNA用于和靶mRNASD序列上游区结合,以期达到调节该mRNA翻译的目的是比较困难的。2.Ⅲ类反义RNA是和mRNA的起始处结合而形成类似ρ-不依赖性的转录终止子而使转录水平上抑制靶基因的表达。因此,要设法在靶mRNA上找
关于反义RNA的注意点的介绍
[1]长的反义RNA并不一定比短的反义RNA更为有效; [2]在原核生物中针对SD序列及其附近区域的反义RNA可能更有效; [3]在真核生物中,对应于5'端非编码区的反义RNA可能比针对编码区的反义RNA更有效; [4]尽量避免在反义RNA分子中出现自我互补的二级结构; [5]设
Science关注:向着RNA开炮的反义新药
来自Science网站的新闻报道,根据一项临床试验发布的结果,采用具有漫长、曲折历史的一种方法策略,一种新药似乎可以减轻克罗恩病(Crohn’s disease)的症状。这一以核苷酸作为基本构件的药物是生物技术公司Celgene做出的一场豪赌,去年Celgene付出7.1亿美元的巨款将这一药物收
Science关注:向着RNA开炮的反义新药
来自Science网站的新闻报道,根据一项临床试验发布的结果,采用具有漫长、曲折历史的一种方法策略,一种新药似乎可以减轻克罗恩病(Crohn’s disease)的症状。这一以核苷酸作为基本构件的药物是生物技术公司Celgene做出的一场豪赌,去年Celgene付出7.1亿美元的巨款将这一药物收
关于反义RNA的基本信息介绍
反义RNA是指与mRNA互补后,能抑制与疾病发生直接相关基因的表达的RNA。它封闭基因表达,具有特异性强、操作简单的特点,可用来治疗由基因突变或过度表达导致的疾病和严重感染性疾病。根据反义RNA的作用机制可将其分为3类:Ⅰ类反义RNA直接作用于靶mRNA的S D序列和(或)部分编码区,直接抑制翻
反义RNA的调控细菌基因的表达功能
反义RNA对编码CAP的基因的调控作用已如前述。这里再介绍一下micF RNA对ompF基因的表达的调控。ompF蛋白质是大肠杆菌的外膜蛋白的主要成分这一。micF RNA是从另一基因(ompC基因)附近的DNA序列转录而来,和o-mpFn RNA的5'端有70%的序列互补,因此在体外mic
关于反义RNA的人工合成的介绍
既然反义RNA在原核生物中对基因表达起着重要的调控作用,那么人工设计在天然状态下不存在的反义RNA来调节靶基因的表达,想必也是可能的。这已在不少实验中得到证实。 1.由于对靶mRNA的SD序列的上游区的结构了解甚少,因此,在要设计Ⅱ类反义RNA用于和靶mRNASD序列上游区结合,以期达到调节该
反义RNA调控细菌基因的表达功能介绍
反义RNA对编码CAP的基因的调控作用已如前述。这里再介绍一下micF RNA对ompF基因的表达的调控。ompF蛋白质是大肠杆菌的外膜蛋白的主要成分这一。micF RNA是从另一基因(ompC基因)附近的DNA序列转录而来,和o-mpFn RNA的5'端有70%的序列互补,因此在体外m
PNAS:研究反义RNA的一条捷径
双链DNA在转录过程中打开,其中一条链生成作为蛋白翻译模板的信使RNA。偶尔,另一条DNA也能产生一个反义的RNA分子(asRNA),这种反义RNA的序列与信使RNA互补。许多细胞中都存在这样的asRNA,但人们并不了解这些分子有何功能。近日,科学家们开发了一个分离和鉴定反义RNA的新
反义RNA的人工合成方法
既然反义RNA在原核生物中对基因表达起着重要的调控作用,那么人工设计在天然状态下不存在的反义RNA来调节靶基因的表达,想必也是可能的。这已在不少实验中得到证实。1.由于对靶mRNA的SD序列的上游区的结构了解甚少,因此,在要设计Ⅱ类反义RNA用于和靶mRNASD序列上游区结合,以期达到调节该mRNA
反义RNA的人工合成过程介绍
既然反义RNA在原核生物中对基因表达起着重要的调控作用,那么人工设计在天然状态下不存在的反义RNA来调节靶基因的表达,想必也是可能的。这已在不少实验中得到证实。1.由于对靶mRNA的SD序列的上游区的结构了解甚少,因此,在要设计Ⅱ类反义RNA用于和靶mRNASD序列上游区结合,以期达到调节该mRNA
反义RNA的IS10转位作用的抑制功能
outRNA是一种反义RNA,可以和IS10编码的转位酶mRNA(INRNA)5'端结合而抑制其翻译,当细胞内只有一个考贝IS10时,只能生成很少量的outRNA,故转位酶仍可生成。但当IS10的考贝数增多时,outRNA愈来愈多,其控制作用亦明显增强,所以称为多考贝抑制现象。这种现象可以防
Nature里程碑研究:新型非编码反义RNA
在研究帕金森氏病的过程中,一个国际研究小组获得了一个可以提高工业蛋白质合成用于治疗用途的新发现。他们设法了解了非蛋白质编码RNA的一个新功能:借助这类称作“反义”的非编码RNA的活性可以提高编码基因的蛋白质合成活性。相关成果发表在10月14日的《自然》(Nature)杂志上。 为了合成蛋白
罗氏与Ionis达成新合作-拓展反义RNA疗法
日前,Ionis Pharmaceuticals宣布与罗氏(Roche)达成一项合作,共同开发IONIS-FB-LRx,用于治疗补体介导的疾病。此次合作将利用Ionis在RNA靶向治疗方面的领导地位,开发针对因子B(factor B, FB)的IONIS-FB-LRx疗法,治疗多种适应症。首个适
显著降低脂蛋白(a)-RNA反义药物2期结果优秀
日前,Ionis Pharmaceuticals及其子公司Akcea Therapeutics宣布了AKCEA-APO(a)-LRx的2期临床研究在已确诊心血管疾病(CVD)和脂蛋白(a)——Lp(a)水平升高患者中的数据。该结果在近日举行的美国心脏协会科学会议上公布。 Lp(a)升高是CVD
反义RNA的噬菌体溶菌/溶源状态的控制功能
反义RNA也参与了λ和P22噬菌体的溶菌/溶源状态的控制。P22噬菌体编码一种抗阻遏蛋白Ant,它可以抑制许多λ样噬菌体的阻遏蛋白与DNA的结合。这对于刚刚感染细胞的P22建立λ样原噬菌体(prophage)是有益的。但是Ant必须在严格的控制下,否则Ant的过分表达必将阻止溶源状态的建立,而成为溶
简述反义RNA的IS10转位作用的抑制作用
outRNA是一种反义RNA,可以和IS10编码的转位酶mRNA(INRNA)5'端结合而抑制其翻译,当细胞内只有一个考贝IS10时,只能生成很少量的outRNA,故转位酶仍可生成。但当IS10的考贝数增多时,outRNA愈来愈多,其控制作用亦明显增强,所以称为多考贝抑制现象。这种现象可
关于反义RNA的噬菌体溶菌/溶源状态的控制功能介绍
反义RNA也参与了λ和P22噬菌体的溶菌/溶源状态的控制。P22噬菌体编码一种抗阻遏蛋白Ant,它可以抑制许多λ样噬菌体的阻遏蛋白与DNA的结合。这对于刚刚感染细胞的P22建立λ样原噬菌体(prophage)是有益的。但是Ant必须在严格的控制下,否则Ant的过分表达必将阻止溶源状态的建立,而成
罗氏反义RNA疗法RG6042在日本被授予孤儿药资格
瑞士制药巨头罗氏(Roche)控股的日本药企中外制药(Chugai)近日宣布,日本卫生劳动福利部(MHLW)已授予该公司研究性药物RG6042(前称IONIS-HTTRx)孤儿有资格(ODD),用于治疗亨廷顿病(Huntington's disease,HD)。RG6042是一种反义RN
罗氏反义RNA疗法tominersen-I期试验暂停,III期不受影响!
罗氏(Roche)近日暂停了tominersen(RG6042,前称IONIS-HTTRx)的一项I期临床试验,该药是一款来源于Ionis制药公司的反义RNA药物,用于治疗亨廷顿病(Huntington's disease,HD)。暂停患者入组的原因是发生了2例与药物无关的鞘内导管相关感
反义RNA药物Tegsedi获欧盟CHMP支持批准-治疗hATTR淀粉样变性
Ionis制药公司是反义RNA疗法方面的行业领导者,已利用其专有的反义RNA技术,创建了一个庞大的首创或同类最佳的药物管线,在研药物超过40种,并与多个行业巨头达成了战略合作,包括:罗氏、诺华、葛兰素史克、阿斯利康、百健等。目前,Ionis公司已有2个反义RNA药物上市,分别为Kynamro(m
反义DNA的应用介绍
反义DNA 被广泛地应用于反义技术中用以“封闭”或“抑制”目的基因表达,被应用的反义DNA多采用化学合成法得到,长度一般在8~28bp,1978年Zamecnik首次利用13bp的反义DNA抑制劳氏肉瘤病毒(RSV)增殖。为了提高半衰期对天然结构反义DNA片断的加工和修饰也应运而生,相继出现了甲
反义DNA技术的应用
反义DNA 被广泛地应用于反义技术中用以“封闭”或“抑制”目的基因表达,被应用的反义DNA多采用化学合成法得到,长度一般在8~28bp,1978年Zamecnik首次利用13bp的反义DNA抑制劳氏肉瘤病毒(RSV)增殖。为了提高半衰期对天然结构反义DNA片断的加工和修饰也应运而生,相继出现了甲基磷
反义DNA的技术介绍
随着分子生物学和遗传工程的发展,基因治疗应运而生,反义技术是其中一种,它的基础是根据核酸杂交原理设计针对特定靶序列的反义核酸,从而抑制特定基因的表达,包括反义RNA、反义DNA及核酶(Ribozyme),它们通过人工合成和生物合成获得。反义DNA是指一段能与特定的DNA或RNA以碱基互补配对的方式结
T4-RNA连接酶的来源和用途
用途:用RNA 3'末端标记;RNA和RNA分子间连接;寡核苷酸的环化;tRNA修饰;5' RACE中寡核苷酸连接到cDNA单链;在蛋白质特定位点引入非天然氨基酸。来源:由大肠杆菌表达,表达基因的来源为T4噬菌体。活性定义:37℃30分钟内,催化1 nmol 5'-[P]-(
关于反义DNA的基本介绍
反义DNA又称反义链。在20世纪60年代的文献上常把作为转录模板的那条链称为有义链或称有义DNA,而另一条单链就称为反义DNA或称反义链,而较近期的文献则相反,把不作模板转录的链称为有义DNA或称编码链,作为模板转录的链称为反义链或反义DNA,或模板链。
关于反义DNA的定义介绍
科学家把能指令蛋白质合成的链称之为有意义的链,而另一条链则为反有意义的,故而被叫做反有意义DNA(简称反义DNA)。又如单链的DNA噬菌体Φ1×l74,其DNA进入寄主细胞后必须复制出一条互补链而成为双链超螺旋结构形式后才能从这一互补链上转录出它所需的RNA。这时称上述这条互补DNA也叫反义DN
反义肽核酸的功能特点
反义肽核酸(antisense peptide nucleic acid;antisense PNA,asPNA)是人工合成的DNA类似物,与核酸分子比较,具有较高的水溶性、稳定性和碱基特异性,容易被细胞吸收。反义肽核酸与DNA形成的三联体结构可阻断基因的转录和翻译,还可通过抑制DNA引物的延伸而抑
反义DNA的概念和结构
反义DNA又称反义链。在20世纪60年代的文献上常把作为转录模板的那条链称为有义链或称有义DNA,而另一条单链就称为反义DNA或称反义链,而较近期的文献则相反,把不作模板转录的链称为有义DNA或称编码链,作为模板转录的链称为反义链或反义DNA,或模板链。