磷脂酰肌醇循环的基本信息
中文名称磷脂酰肌醇循环英文名称phosphatidylinositol cycle定 义影响某些激素受体系统为特征的一套连锁反应,包括磷脂酰肌醇的降解及其快速再合成。该循环可能与钙的动员偶联。应用学科生物化学与分子生物学(一级学科),脂质(二级学科)......阅读全文
磷脂酰肌醇循环的基本信息
中文名称磷脂酰肌醇循环英文名称phosphatidylinositol cycle定 义影响某些激素受体系统为特征的一套连锁反应,包括磷脂酰肌醇的降解及其快速再合成。该循环可能与钙的动员偶联。应用学科生物化学与分子生物学(一级学科),脂质(二级学科)
磷脂酰肌醇循环的定义
中文名称磷脂酰肌醇循环英文名称phosphatidylinositol cycle定 义影响某些激素受体系统为特征的一套连锁反应,包括磷脂酰肌醇的降解及其快速再合成。该循环可能与钙的动员偶联。应用学科生物化学与分子生物学(一级学科),脂质(二级学科)
磷脂酰肌醇磷酸的基本信息
中文名称磷脂酰肌醇磷酸英文名称phosphatidylinositol phosphate;PIP定 义存在于真核细胞质膜中的一种磷脂酰肌醇-4-磷酸(肌醇与磷脂酸的1-羟基相连)。是参与信号转导的一类重要磷脂,起着第二信使的作用,能够使信号逐级传递和放大,最终引起细胞的各种生理性或病理性响应。应
磷脂酰肌醇的基本信息
英文名称:Phosphatidylinositol,简称: PI。PI主要由两部分组成的,一是磷酸1,2-二脂酰甘油,二是肌醇(inositol)。它在细胞中对于细胞形态、代谢调控、信号传导和细胞的各种生理功能起着非常重要的作用。
磷脂酰肌醇激酶的基本信息
中文名称磷脂酰肌醇激酶英文名称phosphatidylinositol kinase;PI kinase定 义磷脂酰肌醇3-激酶(编号:EC 2.7.1.137)、磷脂酰肌醇4-激酶(EC 2.7.1.67)和磷脂酰肌醇4-磷酸5-激酶( EC 2.7.1.68)的统称。分别特异地催化1-磷脂酰-
磷脂酰肌醇激酶的基本信息
中文名称磷脂酰肌醇激酶英文名称phosphatidylinositol kinase;PI kinase定 义磷脂酰肌醇3-激酶(编号:EC 2.7.1.137)、磷脂酰肌醇4-激酶(EC 2.7.1.67)和磷脂酰肌醇4-磷酸5-激酶( EC 2.7.1.68)的统称。分别特异地催化1-磷脂酰-
磷脂酰肌醇激酶的基本信息
磷酸甘油酸激酶(Phosphoglycerate kinase PGK)是每种生物得以生存的必须酶,该酶的缺乏可引起生物体代谢等功能的紊乱。PGK是一个单体的、高度柔曲性的糖酵解酶,它主要由两个球形的结构阈构成,在与底物结合的过程中发生显著的构相改变,最终发生催化效应。该酶在一些细菌细胞中只有一种,
磷脂酰肌醇聚糖的基本信息
中文名称磷脂酰肌醇聚糖英文名称phosphatidylinositol glycan定 义一类与磷脂酰肌醇连接的聚糖。最常见的结构为 -Man α-1,2-Man α-1,6-Man α-1,4-GlcN-。应用学科生物化学与分子生物学(一级学科),糖类(二级学科)
聚糖磷脂酰肌醇的基本信息
中文名称聚糖磷脂酰肌醇英文名称glycan-phosphatidyl inositol;G-PI定 义磷脂酰肌醇可通过一聚糖分子将各种蛋白质锚定在细胞膜上,该聚糖由乙醇胺-(P)-(甘露糖)3-氨基葡糖组成,其一端由共价键与蛋白质的羧基末端连接;其另一端则借助氨基葡糖以共价键结合到磷脂酰肌醇上,而
磷脂酰肌醇的基本信息介绍
PI主要由两部分组成的,一是磷酸1,2-二脂酰甘油,二是肌醇(inositol)。 [1] 它在细胞中对于细胞形态、代谢调控、信号传导和细胞的各种生理功能起着非常重要的作用。
磷脂酰肌醇信号通路的基本信息
中文名称磷脂酰肌醇信号通路外文名称Phosphatidylinositol signalpathway 转换胞外信号转换为胞内信号又称双信使系统
磷脂酰肌醇信号通路的基本信息
在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称为“双信使系统”(double messe
糖基磷脂酰肌醇化的基本信息
中文名称糖基磷脂酰肌醇化英文名称glypiation定 义使糖基磷脂酰肌醇锚与蛋白质连接的反应,发生在内质网中。应用学科生物化学与分子生物学(一级学科),糖类(二级学科)
磷脂酰肌醇蛋白聚糖的基本信息
中文名称磷脂酰肌醇蛋白聚糖英文名称glypican定 义带有糖基磷脂酰肌醇锚的蛋白聚糖。属硫酸乙酰肝素蛋白聚糖,由上皮细胞或纤维细胞等产生。应用学科生物化学与分子生物学(一级学科),糖类(二级学科)
关于糖基磷脂酰肌醇的基本信息介绍
早在上世纪,糖基磷脂酰肌醇(Glycosylphosphatidylinositol , GPI)就被证实是蛋白与细胞膜结合的唯一方式,不同于一般的脂类修饰成分,其结构极其复杂。许多的受体、分化抗原以及具有一些生物活性的蛋白都被证实通过GPI结构而与细胞膜结合。本文就GPI在寄生原虫中的研究进行
γ谷氨酰循环的基本信息
中文名称γ谷氨酰循环英文名称γ-glutamyl cycle定 义组织摄取氨基酸的转运机制。在小肠黏膜、肾小管及脑组织上,细胞膜外侧γ谷氨酰转肽酶,催化谷胱甘肽的γ谷氨酰基与膜外氨基酸结合而带入细胞内释放的过程。谷氨酰基则重新生成谷胱甘肽再进行循环。应用学科生物化学与分子生物学(一级学科),新陈代
关于氢氧化钾循环循环的基本信息介绍
将氢氧化钾运用于治理循环污水中的处理办法。 本发明公开了一种富含砷、铅重金属的酸性污水的循环处理方法。酸性污水送入预处理反应槽与8~12%的石灰乳进行中和后,将处理液送入浓密机,沉淀的污泥经压滤处理以备循环利用,清液送入二级中和反应槽,与絮凝剂及碱金属氢氧化物中和药剂反应。生成的污泥经压滤处理
关于氮循环的基本信息介绍
氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。 氮循环是全球生物地球化学循环的重要组成部分,全球每年通过人类活动新增的“活性”氮导致全球氮循环严重失衡,并引起水体的富营养化、水体酸化、温室气体排放等一系列环境问题。
关于肠肝循环的基本信息介绍
肝肠循环(enterohepaticcirculation)指经胆汁或部分经胆汁排入肠道的药物,在肠道中又重新被吸收,经门静脉又返回肝脏的现象。此现象主要发生在经胆汁排泄的药物中,有些由胆汁排入肠道的原型药物如毒毛旋花子苷G,极性高,很少能再从肠道吸收,而大部分从粪便排出。
关于微循环衰竭的基本信息介绍
微循环衰竭主要是由人体的休克(Shock)引起的。 人体在休克的状态下,全身有效血流量减少,微循环出现障碍,会导致重要的生命器官缺血缺氧。 休克(Shock)指的是一急性的综合症。在这种状态下,全身有效血流量减少,微循环出现障碍,导致重要的生命器官缺血缺氧。即是身体器官需氧量与得氧量失调。休
柠檬酸循环的基本信息介绍
糖类物质如葡萄糖或糖原在有氧条件下彻底氧化,产生二氧化碳和水,并释放出能量的过程称为糖的有氧氧化。人们发现,肌肉糜在有氧存在时,没有乳酸的生成,也没有丙酮酸的累积,但仍有能量放出。著名生物化学家H.Kreb等为阐明在有氧情况下丙酮酸的代谢,作了大量的研究工作,提出了糖的有氧氧化途径,为此获195
乙醛酸循环体的基本信息
乙醛酸循环体是植物细胞细胞器之一。 乙醛酸循环体呈球形,直径约1微米。乙醛酸循环体内含异柠檬酸酶和苹果酸合酶,是细胞进行乙醛酸循环的场所。乙醛酸循环体可分解过氧化物,并参与糖异生作用。
循环免疫复合物的基本信息介绍
当抗原刺激机体可产生特异性抗体,并形成抗原抗体免疫复合物。循环免疫复合物(CIC)是指在体液中游离的抗原-抗体复合物。通常血循环中大分子CIC迅速被单核-巨噬细胞系统清除,小分子CIC在血循环中难以沉积,通过肾脏时被排出体外,因此二者均无致病作用。一般来讲,只有中等大小的可溶性免疫复合物形成并长
磷脂酰肌醇途径
在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称为"双信使系统"(double messe
关于卡尔文循环的基本信息介绍
卡尔文循环(Calvin cycle),一译开尔文循环,又称光合碳循环(碳反应)。是一种类似于克雷布斯循环(Krebs cycle,或称柠檬酸循环)的新陈代谢过程,可使其动物质以分子的形态进入和离开此循环后发生再生。碳以二氧化碳的形态进入并以糖的形态离开卡尔文循环。整个循环是利用ATP作为能量来
关于微循环显微镜的基本信息介绍
微循环显微镜是医院和基础医学科研部门对人体或动物的血液微循环进行观测和研究的重要工具。 1、微循环显微镜的分类: 微循环显微镜分两类:一类是通过目镜进行观察的微循环显微镜(有或没有监视系统接口),另一类是无目镜屏显的微循环显微镜。 [1] 2、微循环显微镜的作用: 微循环显微镜是医院和基
关于微循环检测仪的基本信息介绍
微循环检测仪是一种新颖光电仪器,无创伤、无任何副作用,主要用于对人体甲襞微循环检查,广泛用于临床对多种疾病(心脑血管、高血压、中风、糖尿病、风湿性关节炎等)发生微循环改变的早期诊断,病情预报,疗效判断和预后估计等方面,为临床提供诊断治疗依据。不仅如此,而且在人体保健,美容等生活领域发挥了重要作用
非循环光合磷酸化的基本信息
中文名称非循环光合磷酸化英文名称noncyclic photophosphorylation定 义叶绿体光系统吸收的光能用于产生ATP和NADPH的过程。应用学科细胞生物学(一级学科),细胞生理(二级学科)
磷脂酰肌醇的基本特性
化学途径是G蛋白偶联受体的信号转导通路中的一种途径,在信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称
磷脂酰肌醇的生理作用
DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环;二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。现发现另一种DG生成途径,即由磷脂酶催化质膜上的磷脂酰胆碱断裂产生的DG,