Antpedia LOGO WIKI资讯

化学交换饱和转移成像技术在肌肉骨骼系统的研究进展

化学交换饱和转移成像(chemical exchange saturation transfer,CEST)是一种新型磁共振成像技术,严格意义上来说,它是一种磁共振增强技术。与其他常规MR成像技术相比,CEST技术可以利用非对称分析公式计算出非对称性磁化转移率(magnetization transferration asymmetry,MTRasym),利用该转移率可以分析被检物质的浓度和相关疾病的进展。 CEST最早由Ward等于2000年提出,此技术可定量检测多种代谢物的生化成分,目前已应用于肿瘤、脑卒中、膝关节炎及椎间盘退变等疾病的临床诊疗评估,尤其在肌骨系统相关疾病的早期诊断方面具有很大的应用前景。因此,本文旨在对CEST技术的概念及基本原理、测量指标及其在肌骨系统方面的应用进行综述,以加深对CEST技术在肌骨系统应用的理解。 1.CEST技术的基本概念及原理 CEST技术是在磁化传递技术(magnetiza......阅读全文

磁共振成像的优点

  与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography,CT)相比,磁共振成像的最大优点是它是当前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查

重大科仪专项“人体肺部磁共振成像系统”中期评估会召开

  2015年11月27日,国家重大科研仪器设备研制专项“用于人体肺部重大疾病研究的磁共振成像仪器系统研制”中期评估会议在武汉召开。国家自然科学基金委员会(以下简称基金委)医学科学部副主任孙瑞娟出席会议并讲话,指出国家重大科研仪器研制项目是基金委鼓励创新性研究的重要举措,希望通过

我国自主研发的超极化气体肺部磁共振成像仪获得首幅影像

人口健康直接影响到一个国家的经济发展和社会进步。近年来,由于吸烟、空气污染、人口老龄化等多种因素,我国肺部疾病的发病率逐年上升。研发出更有效的仪器进行肺部疾病的早期诊断成为当前国际医学界研究的热点和难点。 2010年,中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室

脊索瘤的磁共振成像诊断及鉴别诊断实验—磁共振成像法

实验方法原理原子核具有一定的质量和一定的体积,可以把它看成是一个接近球形的固体。实验表明,大多数的原子核如同陀螺一样,都围绕着某个轴作自旋运动。例如,常见的 H11和C136(6是质子数即原子序数,也是电荷数;13是质量数=质子数+中子数)核等都具有这种运动。原子核的自身旋转运动称为核的自旋运动。一

快速磁共振成像技术问世

  为了能够进行慢速扫描,医生们一直在和那些不停扭动的儿童作斗争。   如今,幸亏更快速的磁共振成像(MRI)技术的研制成功,他们可能再也不用焦虑如何让自己的病人保持长时间的静止了。   图中所展示的对一名6岁先天性心脏病患者的心脏血流情况进行的成像仅需要10分钟,而非传统MRI

磁共振成像的其他进展

    核磁共振分析技术是通过核磁共振谱线特征参数(如谱线宽度、谱线轮廓形状、谱线面积、谱线位置等)的测定来分析物质的分子结构与性质。它可以不破坏被测样品的内部结构,是一种完全无损的检测方法。同时,它具有非常高的分辨本领和精确度,而且可以用于测量的核也比较多,所有这些都优于其它测量方法。因此,核磁共

核磁共振成像简介

  核磁共振成像(英语:Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(英语:spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),是利用核磁共振(nuclear magnetic reso

磁共振成像的发展历程

1978 年底,第一套磁共振系统在位于德国埃尔兰根的西门子研究基地的一个小木屋中诞生。 1979 年底,当系统终于可以工作时,它的第一件作品是辣椒的图像。第一张人脑影像于 1980年 3 月获得,当时的数据采集时间为 8 分钟。  1983 年,西门子在德国汉诺威医学院成功安装了第一台临床磁共振成像

磁共振成像(MRI)是什么

MRI为Magnetic Resonance Imaging的缩写,中文称“磁共振或磁共振成像”,过去曾称“核磁共振”,亦可称共轭摄影法。MRI是一种新颖的成像方法,它具有组织对比性强、空间分辨率高、多平面的解剖结构显示和无射线损伤等特点,并对生理变化特别敏感。近年来,医学影像学技术飞速发展,已有4

核磁共振的成像原理

核磁共振成像原理原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一