.一碳单位的主要作用
1.一碳单位是合成嘌呤和嘧啶的原料,在核酸生物合成中有重要作用。如N5-N10-CH=FH4直接提供甲基用于脱氧核苷酸dUMP向dTMP的转化。N10-CHO-FH4和N5N10-CH=FH4分别参与嘌呤碱中C2,C3原子的生成。2.SAM提供甲基可参与体内多种物质合成。例如肾上腺素、胆碱、胆酸等。一碳单位代谢将氨基酸代谢与核苷酸及一些重要物质的生物合成联系起来。一碳单位代谢的障碍可造成某些病理情况,如巨幼红细胞贫血等。磺胺药及某抗癌药(氨甲喋呤等)正是分别通过干扰细菌及瘤细胞的叶酸、四氢叶酸合成,进而影响核酸合成而发挥药理作用的。......阅读全文
.一碳单位的主要作用
1.一碳单位是合成嘌呤和嘧啶的原料,在核酸生物合成中有重要作用。如N5-N10-CH=FH4直接提供甲基用于脱氧核苷酸dUMP向dTMP的转化。N10-CHO-FH4和N5N10-CH=FH4分别参与嘌呤碱中C2,C3原子的生成。2.SAM提供甲基可参与体内多种物质合成。例如肾上腺素、胆碱、胆酸等。
一碳单位的主要生理功能
一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。
一碳单位的特点
一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。
什么是一碳单位?
一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。
一碳单位的来源及转换
一碳单位主要来源于丝氨酸,在丝氨酸羟甲基转移酶催化为甘氨酸过程中产生的N5,N10-CH2-FH4;甘氨酸在甘氨酸合成酶(glycine synthase)催化下可分解为CO2,NH4+和N5,N10-CH2-FH4。此外,苏氨酸和丝氨酸都可经相应酶催化转变为甘氨酸 。因此亦可产生N5,N10-CH
体内的一碳单位有哪些?
体内的一碳单位有:甲基(-CH3,methyl)、甲烯基(=CH2,methylene),甲炔基(-CH=,methenyl)、甲酰基(-CHO,formyl)及亚氨甲基(-CH=NH,formimino)等。它们可分别来自甘氨酸、组氨酸、丝氨酸、色氨酸、蛋氨酸等。
一碳单位的来源及转换
一碳单位主要来源于丝氨酸,在丝氨酸羟甲基转移酶催化为甘氨酸过程中产生的N5,N10�甲烯�FH4;甘氨酸在甘氨酸合成酶(glycine synthase)催化下可分解为CO2,NH+4和N5,N10�H2�H4.此外,苏氨酸和丝氨酸都可经相应酶催化转变为丝氨酸。因此亦可产生N5、N10�H2�H4.
关于一碳单位的功能的介绍
1.一碳单位是合成嘌呤和嘧啶的原料,在核酸生物合成中有重要作用。如N5-N10-CH=FH4直接提供甲基用于脱氧核苷酸dUMP向dTMP的转化。N10-CHO-FH4和N5N10-CH=FH4分别参与嘌呤碱中C2,C3原子的生成。 2.SAM提供甲基可参与体内多种物质合成。例如肾上腺素、胆碱、
简述一碳单位代酸的辅酶
体内的一碳单位有:甲基(-CH3,methyl)、甲烯基(=CH2,methylene),甲炔基(-CH=,methenyl)、甲酰基(-CHO,formyl)及亚氨甲基(-CH=NH,formimino)等。它们可分别来自甘氨酸、组氨酸、丝氨酸、色氨酸、蛋氨酸等。 一碳单位不能游离存在,通常
关于一碳单位的来源及转换
一碳单位主要来源于丝氨酸,在丝氨酸羟甲基转移酶催化为甘氨酸过程中产生的N5,N10-CH2-FH4;甘氨酸在甘氨酸合成酶(glycine synthase)催化下可分解为CO2,NH4+和N5,N10-CH2-FH4。此外,苏氨酸和丝氨酸都可经相应酶催化转变为甘氨酸 。因此亦可产生N5,N10-
碳正离子的主要作用
碳正离子广泛存在于许多化学反应中,认识碳正离子有利于把握许多复杂化学反应的本质。分析这种物质对发现能廉价制造几十种当代必需的化工产品是至关重要的。欧拉教授发现了利用超强酸使碳正离子保持稳定的方法,能够配制高浓度的碳正离子和仔细研究它。他的发现已用于提高炼油的效率、生产无铅汽油和研制新药物。
简述碳正离子的主要作用
碳正离子广泛存在于许多化学反应中,认识碳正离子有利于把握许多复杂化学反应的本质。分析这种物质对发现能廉价制造几十种当代必需的化工产品是至关重要的。欧拉教授发现了利用超强酸使碳正离子保持稳定的方法,能够配制高浓度的碳正离子和仔细研究它。他的发现已用于提高炼油的效率、生产无铅汽油和研制新药物。
热膨胀仪的主要应用单位
热膨胀仪在一定的温度程序以及负载力等因素,接近于零时,可以测量出样品的尺寸变化随温度或时间变化,呈现的函数关系。 对于固体、熔融金属、粉末、涂料等各类样品,热膨胀仪都可以广泛应用这些样品的测量中,在无机陶瓷、金属材料、建筑等领域中,也有广泛应用。 工业用户、科研与教学是热膨胀仪主要的使用单
第一信使的主要作用
单细胞生物直接对外界环境的变化作出反应,高等生物大多数细胞不与外界直接接触,而细胞间的联系和通讯又必不可少,这就需要在众多的细胞之间建立有效的信息联络,通过细胞间和细胞内的信息物质来彼此协调,相互配合,维持机体的恒稳状态,以适应各种生命活动和生长繁殖的需求。细胞信号转导(cellular signa
碳谱的作用
碳谱是用来测碳的。碳谱能直接测定碳原子的类型和相对个数。而氢谱对碳链的信息是由与碳相连的氢推测出来的。碳谱提供碳原子的信息,比如连接官能团情况,碳的个数,取代方式(CH2,CH,CH3)等,与氢谱相比,最明显的不同就是出峰像一条线,而且不用积分。相关信息介绍:根据碳峰强度可以分类:d、e、k、l各峰
碳同化的主要途径介绍
高等植物固定CO2的生化途径有3条:卡尔文循环、C4途径和景天酸代谢途径。
亚单位疫苗的定义和作用
亚单位疫苗,即通过化学分解或有控制性的蛋白质水解方法,提取细菌、病毒的特殊蛋白质结构,筛选出的具有免疫活性的片段制成的疫苗。亚单位疫苗是将致病菌主要的保护性免疫原存在的组分制成的疫苗,也叫组分疫苗。
碳负离子的作用
碳负离子在有机合成中有着极其重要的地位。它参与了许多重要的有机合成反应,比如:酯缩合,羟醛缩合,witting反应,麦克尔加成等。认识碳负离子有助于我们认识正确的有机合成本质。
碳硫仪的主要特点
· 单片计算机控制程序运行、数字电压表显示碳硫质量分数· 碳硫测定均采用压力传感技术检测数据· 气体容量法测碳;碘量法测硫
测碳仪主要特点
1.独特的水平燃烧系统,没有样品的沉积,大大降低了连续做样由于样品沉积带来记忆效应的误差.2.ZL的动态燃烧和静态燃烧技术,使得所有样品都能够燃烧充分,从而得到可靠的数据.3.独有的静态检测技术4.唯一一台采用独立的三组热导检测器,单独测量各个元素含量,使得该仪器具有非常好的线性响应及超高的精密度和
β折叠的主要作用
能形成β折叠的氨基酸残基一般不大,而且不带同种电荷,这样有利于多肽链的伸展,如甘氨酸、丙氨酸在β折叠中出现的几率最高。免疫球蛋白有大量的β折叠层。另一种常见的蛋白质模序是α螺旋和三种不同的β转角。不属于一个模序的蛋白质一级结构部分被称之为不规则螺旋。这些部分对蛋白质的空间构象非常重要。
辅酶主要的作用
1. 抗心肌缺血作用。2. 增加心输出量,降低外周阻力,有助于抗心衰作用,醛固酮的合成与分泌有抑制作用并干扰其对肾小管的效应。3. 抗心律失常作用。4. 使外周血管阻力下降。5. 能激活人体细胞和细胞能量的营养,具有提高人体免疫力、增强抗氧化、延缓衰老和增强人体活力。此外,还有抗阿霉素的心脏毒性作用
血清的主要作用
血清也是就是指血液凝固后,在血浆中除去纤维蛋白分离出的淡黄色透明液体或指纤维蛋白已被除去的血浆。我公司热销的血清产品有胎牛血清,成牛血清,人血清,人ab血清等。 血清的种类是繁多的,我公司业务员经常能接到咨询血清的朋友电话,血清与血浆是不同的,下面来看一看血清的主要作用。第一,它提供基本营养物质:氨
佐剂的主要作用
由于佐剂能增强抗原表面面积,并能延长抗原在体内保留时间,使抗原与淋巴系统细胞有充分接触时间,所以它有多种作用:(1)把无抗原性的物质转变为有效的抗原;(2)增强循环抗体的水平或产生更有效的保护性免疫;(3)改变所产生的循环抗体的类型;(4)增强细胞介导的超敏反应的能力;(5)产生实验性自身免疫或其他
血清的主要作用
●提供基本营养物质:氨基酸、维生素、无机物、脂类物质、核酸衍生物等,是细胞生长必须的物质。●提供激素和各种生长因子:胰岛素、肾上腺皮质激素(氢化可的松、地塞米松)、类固醇激素(雌二醇、睾酮、孕酮)等。生长因子如成纤维细胞生长因子、表皮生长因子、血小板生长因子等。●提供结合蛋白:结合蛋白作用是携带重要
组胺的主要作用
组胺,是一种有机含氮化合物,是由组氨酸在脱羧酶的作用下产生的。许多组织,特别是皮肤、肺和肠黏膜的肥大细胞中含有大量的组胺。当组织受到损伤或发生炎症和过敏反应时,都可释放组胺。组胺有强烈的舒血管作用,并能使毛细血管和微静脉的管壁通透性增加,血浆漏入组织,导致局部组织水肿。
辅酶主要的作用
1. 抗心肌缺血作用。2. 增加心输出量,降低外周阻力,有助于抗心衰作用,醛固酮的合成与分泌有抑制作用并干扰其对肾小管的效应。3. 抗心律失常作用。4. 使外周血管阻力下降。5. 能激活人体细胞和细胞能量的营养,具有提高人体免疫力、增强抗氧化、延缓衰老和增强人体活力。此外,还有抗阿霉素的心脏毒性作用
乙烯的主要作用
促进果实成熟,促进器官脱落和衰老。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,并使细胞膜的通透性增加, 加速呼吸作用。因而果实中乙烯含量增加时,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶
番泻叶的主要作用
番泻叶中含蒽酮衍化物,其泻下作用及刺激性较含蒽醌类之其他泻药更强,因而泻下时可伴有腹痛。其有效成分主要为番泻甙A、B,经胃、小肠吸收后,在肝中分解,分解产物经血行而兴奋骨髓盘神经节以收缩大肠,引腹泻,番泻的作用较广泛而强烈,并认为用于急性便秘比慢性者更适合。抗菌。番泻类植物可产生许多具有经济价值
目镜的主要作用
目镜用来观察前方光学系统所成图像的目视光学器件,是望远镜、显微镜等目视光学仪器的组成部分,主要作用是将由物镜放大所得的实像再次放大。为消像差,目镜通常由若干个透镜组合而成,具有较大的视场和视角放大率。