半导体所等在量子点光子相干物理研究中取得新进展
未来量子信息应用最具挑战性问题是单量子态的检测和操纵,这是因为量子态很脆弱,一旦融入外在环境,其量子性质很容易被破坏。S. Haroche和D. Wineland通过微波腔囚禁单个原子、电势阱俘获带电离子等实验手段,在单个光子态的测量和操纵方面做出了奠基性的工作,获得了2012年度诺贝尔物理学奖。他们采用的量子干涉实验技术成为量子光学研究的主要方法。如何在固态体系中实现量子相干操纵是未来量子网络和量子计算应用的关键和焦点问题。 近日,Phys. Rew. Lett.(109, 267402, 2012)报道了中国科学院半导体研究所与美国南弗罗里达大学和德克萨斯大学奥斯汀分校合作开展的基于InAs量子点固态量子体系的光子干涉研究的重要进展:在半导体InAs自组织量子点中同时观测到单光子和双光子的量子干涉现象,研究了光谱色散对干涉对比度的影响。 半导体所新型半导体光电材料和量子信息课题组近年来开展了In......阅读全文
半导体所等在量子点光子相干物理研究中取得新进展
未来量子信息应用最具挑战性问题是单量子态的检测和操纵,这是因为量子态很脆弱,一旦融入外在环境,其量子性质很容易被破坏。S. Haroche和D. Wineland通过微波腔囚禁单个原子、电势阱俘获带电离子等实验手段,在单个光子态的测量和操纵方面做出了奠基性的工作,获得了2012年度
量子点源产生近乎完美纠缠光子对
加拿大滑铁卢大学量子计算研究所(IQC)科学家汇集了两项诺贝尔奖的研究概念,从量子点源有效地产生了近乎完美的纠缠光子对。发表在《通信物理》上的该项成果将推动量子通信领域的发展。 纠缠光子源示意图。嵌入半导体纳米线中的铟基量子点(左),以及如何从纳米线有效提取纠缠光子。 纠缠光子是在远距离也能
量子点源产生近乎完美纠缠光子对
原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519839.shtm科技日报北京3月26日电 (记者张梦然)加拿大滑铁卢大学量子计算研究所(IQC)科学家汇集了两项诺贝尔奖的研究概念,从量子点源有效地产生了近乎完美的纠缠光子对。发表在《通信物理》上的该
科学家首次实现双光子“量子漫步”
据英国《每日邮报》9月19日(北京时间)报道,由英国布里斯托尔大学研究人员领导的国际研究小组制造出了一种新型的光子芯片,并在其上实现了双光子量子漫步。研究人员表示,他们的研究开辟了量子计算的新道路。 英国布里斯托尔大学量子光学中心的科学家们成功制造出了这种光子(硅)芯片。他
半导体所等在纳米线量子点单光子发射研究中获得新发现
半导体自组织InAs量子点因其具有“类原子”特性,是目前量子物理和量子信息器件研究最重要的固态量子结构之一。基于InAs量子点的高品质单光子的发射、读取、操纵、存储以及并行计算等是热点研究方向。而InAs单量子点的可控制备(如精确定位、有序扩展、与光学谐振腔耦合等)是目前面临的挑战性问题。
胶体量子点单光子辐射研究取得进展
原文地址:http://news.sciencenet.cn/htmlnews/2023/7/504898.shtm
科学家首次实现双光子的量子游走
新研究成果或使量子计算机10年内面世 英国布里斯托尔大学等机构的研究人员在新一期美国《科学》杂志上报告了量子计算机研究领域的新进展。领导研究的杰里米·奥布赖恩教授认为,这一进展可能使量子计算机面世的时间提前到10年之内。 奥布赖恩教授领导的这个小组由英国、日本、以色列和荷兰等多国研究人员组成。他
中国科大在量子点单光子源量子调控研究中取得进展
日前,中国科学技术大学潘建伟、陆朝阳等组成的研究小组,在国际上首次发展了量子光学实验方法动态调控“人造原子”的单光子发射,在两能级原子体系中通过多激光缀饰态和量子干涉机理消除自发辐射谱线,证实了多光子ac斯塔克效应和自发辐射相干理论,为固态体系高性能单光子源和量子计算的研究开辟了新途径。研究成果发表
中国科大在量子点单光子源量子调控研究中取得进展
日前,中国科学技术大学潘建伟、陆朝阳等组成的研究小组,在国际上首次发展了量子光学实验方法动态调控“人造原子”的单光子发射,在两能级原子体系中通过多激光缀饰态和量子干涉机理消除自发辐射谱线,证实了多光子ac斯塔克效应和自发辐射相干理论,为固态体系高性能单光子源和量子计算的研究开辟了新途径。研究成果
半导体所HgTe半导体量子点研究取得新进展
近年来,拓扑绝缘体材料以其独特的物性吸引了科学界广泛的研究关注。这类材料内部是绝缘体,而在边界或/和表面则显示出金属的特性。这种独特的性质无法按照传统的材料分类方法来区分。其能带结构由Z2拓扑不变量来刻画。目前人们注意力集中在拓扑绝缘体块材的制备和输运性质研究方面。相对而言,拓扑绝缘体纳米结构的
我国在量子计算研究获进展-实现三量子点半导体调控
近期,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在半导体量子计算芯片研究方面取得新进展。实验室郭国平研究组创新性地引入第三个量子点作为控制参数,在保证新型杂化量子比特相干性的前提下,极大地增强了杂化量子比特的可控性。国际应用物理学顶级期刊《应用物理评论》日前发表了该成果。 开发与
在半导体量子点系统中实现量子干涉与相干俘获
中国科学技术大学郭光灿院士团队在半导体量子点的量子态调控研究中取得重要进展。该团队教授郭国平、李海欧与中国科学院物理研究所研究员张建军等合作,在锗硅双量子点系统中实现了量子干涉和相干俘获(CPT)。该工作对基于半导体量子点系统的量子模拟和量子计算具有重要的指导意义。研究成果日前在线发表于《纳米快报》
金属魔法:用半导体量子点打造梦想材料
据最新一期《自然·通讯》杂志报道,包括日本RIKEN新兴物质科学中心研究人员在内的团队成功创造了一种由硫化铅半导体胶体量子点组成的“超晶格”,研究人员在这种晶格中实现了类似金属的导电性,导电性比目前的量子点显示器高100万倍,且不会影响量子限制效应。这一进步可能会彻底改变量子点技术,从而在电致发光设
量子点尺寸调控实现半导体SERS基底性能提升
表面增强拉曼技术(Surface-enhanced Raman Spectroscopy,SERS)是无损、高灵敏、高特异性光谱技术,在反应监测、生物医学检测、环境监测等学科中颇具应用价值。近年来,半导体SERS基底的性能调控备受关注。然而,半导体SERS增强效果普遍较弱,难以应用于散射截面较小的无
氮掺杂石墨烯量子点在双光子荧光成像研究取得进展
双光子荧光成像技术具有近红外激发、避免光毒作用和光漂白、自发荧光干扰弱及较深的组织穿透深度等优点,在生物医药领域研究中受到极大关注。开发具有高双光子吸收截面、生物相溶性好的材料作为双光子荧光探针,是活细胞和深层组织成像研究领域的关键和热点。 国家纳米科学中心宫建茹研究组以氧化石墨烯为前驱体
科学家用激光照射量子点获得成对光子
奥地利因斯布鲁克大学的科学家借助微型半导体结构,用激光照射量子点首次获得了成对的光子。这一成果可进一步推动量子的应用研究,并可用于量子计算机的开发。 据奥地利新闻社3月27日报道,量子点是准零维的纳米材料,由少量的原子构成。单个原子很难被“固定”,而量子点比较容易“被集成到半导体芯片中”。
双光子显微镜的双光子显微镜的优势
双光子荧光显微镜有很多优点:1)长波长的光比短波长的光受散射影响较小容易穿透标本;2)焦平面外的荧光分子不被激发使较多的激发光可以到达焦平面,使激发光可以穿透更深的标本;3)长波长的近红外光比短波长的光对细胞毒性小;4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。所以,双光子显
LaVision双光子显微镜多线扫描双光子成像(一)
Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,∗, Matthi
LaVision双光子显微镜多线扫描双光子成像(二)
2. 方法与结果 为了从激光扫描显微镜的功能性成像中得出重要结论,一个高的时间分辨率是很重要的。在低光情况下,这通常通过进行单线扫描来获取。这被以一个垂直系统(VS)神经元的突触前分支的激光共聚焦(Leica SP2)钙离子成像示例 (see Fig. 1, Table 1). 这类神
LaVision双光子显微镜多线扫描双光子成像(四)
2.3. 多线TPLSM中的获取模式 我们以两种获取模式操作多线TPLSM:第一种,整个研究使用所谓“帧扫描”模式,以64束激光在X、Y方向扫描样品。因此焦平面上激发了均一性照明,假定光束阵列的横向步长尺寸没有过于粗糙(通常使用≤400 nm的步长尺寸)。在Fig. 3A,展示了以“帧
LaVision双光子显微镜多线扫描双光子成像(三)
2.2.多线TPLSM中通过成像检测释放光 在单光束TPLSM中,光电倍增管PMT或者雪崩二极管APD可以很方便地用于释放光检测,由于双光子激发的原理,激发只发生在激光焦点处。因此,用于屏蔽离焦光线的共焦小孔变得不必要,并且可以使用NDD检测。这意味着激发光不会被送回扫描镜,而是直接进入位于靠
LSCM的双光子技术
近年来LSCM推出了双光子技术,即利用两个低能量激发光子激发一个荧光分子,其荧光波长等于一个高能量单光子直接激发一个荧光分子,却降低荧光损耗,并具有更高的激发功率和稳定的穿透力,从而提高图片分辨率,值得进行尝试和应用。总之,LSCM技术因其简单易行的前期处理、高辨识度的后期成像及无损于样品等优势,将
光子处理器“点亮”量子计算
科技日报北京6月1日电 (记者张梦然)英国《自然》杂志1日报告的一台量子光子处理器,仅需36微秒即可完成超级计算机需耗时超过9000年才能完成的一项任务。该系统相对过去展示的光子设备有所改进,可能代表了向创造量子计算机迈进的关键一步。 量子设备的一个关键目标是超越经典系统,建立“量子优越性”,但
原子—光子量子操控研究获得进展
华东师大物理系系主任、精密光谱科学与技术国家重点实验室长江学者张卫平领衔的研究团队,在原子—光子量子操控领域取得重要的实验研究进展,最新成果日前发表在美国物理学会杂志《物理评论快报》(Physical Review Letters)上。 该实验研究表明,利用基于拉曼
双光子显微镜简介
双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子
关于多光子技术的展望介绍
目前,多光子技术的研究主要以双光子技术为主。与双光子激发相比 ,三光子激发更能体现出多光子成像的优势。1997年, Webb等已经实现了三光子激发对小鼠活体内的血液复合胺成像。改善成像质量、提高成像速度是多光子技术发展的方向之一。 同时,寻找和制造更适合多光子激发使用的光聚合体 、大吸收截面的荧
多光子非线性量子干涉首次实现
记者16日从中国科学技术大学获悉,该校郭光灿院士团队任希锋研究组与国外同行合作,基于光量子集成芯片,在国际上首次展示了四光子非线性产生过程的干涉。 量子干涉是众多量子应用的基础,特别是近年来基于路径不可区分性产生的非线性干涉过程越来越引起人们的关注。尽管双光子非线性干涉过程已经实现了20多年,并
多光子非线性量子干涉首次实现
记者16日从中国科学技术大学获悉,该校郭光灿院士团队任希锋研究组与国外同行合作,基于光量子集成芯片,在国际上首次展示了四光子非线性产生过程的干涉。相关成果日前发表在光学权威学术期刊《光学》上。 量子干涉是众多量子应用的基础,特别是近年来基于路径不可区分性产生的非线性干涉过程越来越引起人们的关注
“超表面”器件能集成光子量子操作
据最新一期《科学》杂志报道,美国哈佛大学研究人员开发出一种新型光学器件,即“超表面”,可在单一的平面上完成复杂量子操作。超表面可同时承担多种传统光学元件功能,解决了光子量子信息处理领域长期存在的体积庞大、组件繁多等扩展性难题,有望推动常温下量子计算和量子网络的实现。光子是光的基本粒子,具有高速、抗干
光子(量子)的主要作用是什么?
光子是传递电磁相互作用的基本粒子,是一种规范玻色子。光子是电磁辐射的载体,而在量子场论中光子被认为是电磁相互作用的媒介子。与大多数基本粒子相比,光子的静止质量为零,这意味着其在真空中的传播速度是光速。与其他量子一样,光子具有波粒二象性:光子能够表现出经典波的折射、干涉、衍射等性质;而光子的粒子性