Antpedia LOGO WIKI资讯

重磅Acta:激光粉末增材制造颗粒增强金属基复合材料!

导读:了解复杂的多相相互作用对于减少金属基复合材料增材制造 (AM) 中的缺陷是至关重要的。在这项研究中,研究者们提出了一个高保真模型,使用求解计算流体动力学和离散元方法 (CFD-DEM) 以及双向动量和能量交换来揭示AM 过程中熔池和增强固体颗粒的动态。用单质粉末共混制备的钨铜复合材料的电子束熔化实验验证了该模型的有效性。结果表明,包括动态润湿现象和拉普拉斯压力在内的界面效应在固相颗粒增强动力学过程中起着重要作用。另一方面,熔池中强化固体颗粒的存在改变了熔池尺寸,也改变了熔化过程中的流场。虽然界面效应会导致钨颗粒在单轨表面团聚,但适当层厚的分层沉积方案消除了团簇,促进钨颗粒在致密体试样中的均匀分布,这表明AM能够实现增强固体颗粒在金属基体中的自发分散。这项工作为金属基复合材料AM过程中的多相动力学提供了前所未有的细节。 金属基复合材料 (MMC) 包括金属基体的特性(延展性和韧性)和增强相(高强度和刚度),它具有优异的......阅读全文

重磅Acta:激光粉末增材制造颗粒增强金属基复合材料!

  导读:了解复杂的多相相互作用对于减少金属基复合材料增材制造 (AM) 中的缺陷是至关重要的。在这项研究中,研究者们提出了一个高保真模型,使用求解计算流体动力学和离散元方法 (CFD-DEM) 以及双向动量和能量交换来揭示AM 过程中熔池和增强固体颗粒的动态。用单质粉末共混制备的钨铜复合材料的电子

激光金属增材制造实现“多线并行”

       南京航空航天大学材料科学与技术学院、江苏省高性能金属构件激光增材制造工程实验室教授顾冬冬团队,提出材料—结构—性能一体化激光金属增材制造的整体性概念。5月28日,相关综述论文发表于《科学》。 高性能金属构件是航空、航天、交通、能源等现代工业的基石,且高端装备的服役性能很大程度上取决

增材制造:通过扫描电镜(SEM)改进增材制造加工工艺

在之前的博客中,我们介绍了增材制造(AM)是一种新的制造方法,并介绍了其关键点。 增材制造也被称为 3D 打印或快速成型,由于其无限的潜力,吸引了全球众多人士和行业的关注。 在这篇博客中,我们将介绍如何使用扫描电镜(SEM)来监测和改善增材制造质量。 扫描电镜(SEM)检测表面缺陷 目前,AM 厂商

中德金属增材制造技术联合实验室挂牌

  近日,由南京理工大学、德国CONCEPT Laser有限公司和上海福斐科技发展有限公司共同主办的中德金属增材制造技术联合实验室正式成立。这是迄今为止国内高校在该行业建立的最高水平的国际化联合实验室。   增材制造技术是三维打印技术的一种,即以数字模型文件为基础,运用粉末状金属或塑料等可粘合

金属零件增材制造及修复研究取得进展

  近日,中国科学院沈阳自动化研究所在高性能金属零件增材制造及修复领域取得新进展,提出了异质材料\工艺界面梯度缓冲层设计方法,并应用于大尺寸镜面模具增材制造。  高性能模具在航空航天、轨道交通等领域应用广泛,而其制造难点包含模具钢的品质、曲面精度、表面质量、性能稳定性等。因此,对制造工艺、设备自动化

新加坡推出增材制造创新组合

  新加坡加强在业界推动三维打印技术的力度,推出该技术的创新组合,协助当地企业在核心业务和制造过程中,更易于采纳这项技术。   新加坡总理公署部长兼内政部及贸工部第二部长易华仁9月22日在科技创新(TechInnovation)展览上宣布,新加坡将推出全国增材制造创新组合(National Addi

金属增材制造工艺过程模拟与产品缺陷预测获进展

  增材制造(即“3D打印”)减少了传统制造工艺在优化设计、结构创新及复杂结构制造上的困难,为下一代工业革命奠定了基础。模拟与仿真可以提升增材制造产能,缩短材料与产品研发周期,预测及修正产品瑕疵,降低生产成本,在增材制造过程中起着日益重要的作用。美国、德国等制造业大国已经将增材制造模拟与仿真技术及软

增材制造和扫描电镜(SEM)

增材制造和扫描电镜(SEM)   在增材制造中,产品的质量控制以及检测产品表面缺陷是至关重要的。 但是,作为增材制造商,希望能够在不占用太多时间的情况下改善 AM 流程。     Additive Industries 是世界上第一家用于工业金属增材制造系统的专用设备制造商。他们设法解决这

增材制造实现汽车“私人定制”

以3D打印、增材制造、快速制造为代表的大量快速、高效、清洁的柔性制造在工业中获得广泛应用,有效解决了个性化小批量生产与制造成本之间的矛盾。 中国要成为世界制造强国,必须要发展高新技术产业,而新材料、新技术对产业的拉动作用不可小视,增材制造与快速制造技术也会让汽车行业受益无穷。

增材制造技术走出实验室

图为应用于超声探头的增材制造技术   以航空发动机里面的一个零件为例:如果采用传统的加工方式,大概需要40个小时,而采用增材制造技术,则加工过程可控制在12~13个小时之内。   国内也在开展相关技术的研究,但是总体而言,国内企业的应用量和技术拓展力度还不够大。   在工业制造