磷壁酸的主要生理功能
一通过分子上的大量负电荷浓缩细胞周围的Mg2+,以提高细胞膜上一些合成酶的活性。二 贮藏元素。三 调节细胞内自溶素(autolysin)的活力,借以防止细胞因自溶而死亡。四 作为噬菌体的特异性吸附受体。五 赋予G+细菌特异的表面抗原,因而可用于菌种鉴定。六 增强某些致病菌对宿主细胞的粘连,避免被白细胞吞噬,并有抗补体作用。......阅读全文
钠泵的生理功能有什么?
1.维持细胞内高浓度K+,这是胞质内许多代谢反应所必需的,如核糖体合成蛋白质;2.建立的Na+跨膜梯度,为物质继发性主动转运提供势能储备,如Na+-H+交换和Na+-Ca2+交换;3.钠泵活动造成的膜内外Na+和K+浓度差,是细胞生物电活动产生的基础;4.维持细胞内渗透压和细胞容积的相对稳定。5.
棕榈油酸的生理功能
棕榈油酸对高血糖的影响高血糖也是现代居民常见慢性疾病之一,严重影响生活质量。Wang等的研究发现血浆中的棕榈油酸含量可以影响肌肉组织的胰岛素抵抗水平。在此基础上,Talbot等研究发现棕榈油酸可以提高肌肉的胰岛素敏感性并通过对巨噬细胞的活化抵消饱和脂肪酸导致的胰岛素抗性。Kurotani等研究了脂肪
尼氏体的生理功能
尼氏体的功能是合成更新细胞器所需的结构蛋白、合成神经递质所需的酶类以及肽类的神经调质,其形状、数量和分布随不同的神经元而异。在代谢功能旺盛的神经元中尼氏体特别丰富。当神经元受到损伤或过度疲劳时,尼氏体可减少、解体甚至消失。在损伤或疲劳恢复过程中,尼氏体又重新出现、增多,并可至正常水平。故尼氏体可
四氢叶酸的生理功能
四氢叶酸是一碳基团转移酶的辅酶,具有传递一碳基团的作用,是许多生物合成反应所必需的辅酶,其分子中的N5和N10是结合一碳基团的部位。因一碳基团是生物体内合成嘌呤核苷酸和胸腺嘧啶核苷酸的原料之一,所以叶酸在核酸的生成过程中起着重要作用,并对蛋白质的合成和细胞的生长产生影响。若机体内缺乏四氢叶酸,则使多
细胞膜的生理功能
细胞膜有重要的生理功能,它既使细胞维持稳定代谢的胞内环境,又能调节和选择物质进出细胞。细胞膜通过胞饮作用(pinocytosis)、吞噬作用(phagocytosis)或胞吐作用(exocytosis)吸收、消化和外排细胞膜外、内的物质。在细胞识别、信号传递、纤维素合成和微纤丝的组装等方面,质膜
离子通道的生理功能
⑴提高细胞内钙浓度,从而触发肌肉收缩、细胞兴奋、腺体分泌、钙依赖性离子通道开放和关闭、蛋白激酶的激活和基因表达的调节等一系列生理效应。⑵在神经、肌肉等兴奋性细胞,钠和钙通道主要调控去极化,钾主要调控复极化和维持静息电位,从而决定细胞的兴奋性、不应性和传导性。⑶调节血管平滑肌舒缩活动,其中有钾、钙、氯
甲基钴胺素的生理功能介绍
主要有两个: ①作为甲基转移酶的辅因子,参与蛋氨酸、胸腺嘧啶等的合成,如使甲基四氢叶酸转变为四氢叶酸而将甲基转移给甲基受体(如同型半胱氨酸),使甲基受体成为甲基衍生物(如甲硫氨酸即甲基同型半胱氨酸),反应如图所示。因此维生素B12可促进蛋白质的生物合成,缺乏时影响婴幼儿的生长发育。 ②保护叶
体内钙离子的生理功能
体内Ca2+的生理功能 ⒈血浆钙离子可降低毛细血管和细胞膜的通透性,降低神经、肌肉的兴奋性当血浆钙离子的浓度降低时,神经、肌肉的兴奋性增高,可引起抽搐。 ⒉血浆钙离子作为血浆凝血因子Ⅳ参与凝血过程它是因子Ⅸ、因子Ⅹ、凝血酶原、因子ⅩⅢ等的激活作用中不可缺少的辅因子。 ⒊骨骼肌中的钙离子可引起肌肉
卵磷脂的生理功能介绍
1.人体营养需要人体所需的外源性胆碱90%是由卵磷脂提供。卵磷脂提供胆碱有两大益处:其一,不像游离胆碱会因肠道中微生物作用而降解成为甲胺;其次,是在肝以及其他纤维组织中由脑磷脂(PE)的连续甲基化获得胆碱,且这一合成过程需要一定时间,故当膳食胆碱不足时,体内尚存卵磷脂(PC)的内源资源即可补充人体需
概述胸腺素的生理功能
1. 连续诱导T细胞分化、发育的各个阶段 2. 维持机体免疫平衡状态 增强T细胞对抗原的反应 3. 从而提高机体抵抗疾病的能力 胸腺中包含多种激素,归属于α、β、γ三类,共同诱导T细胞的成熟分化。胸腺肽在我国临床应用已20余年,过去因各种制剂制备方法和质量控制不统一,临床观察不规范,疗效难
中性粒细胞的生理功能
中性粒细胞胞质中含有许多弥散分布的细小的浅红或浅紫色的特有颗粒。可分为两类颗粒:较大的初级颗粒,即溶酶体颗粒,内含髓过氧化物酶、酸性磷酸酶和溶菌酶等;较小的次级颗粒,内含碱性磷酸酶、溶菌酶、防御素、杀菌渗透增强蛋白等。髓过氧化物酶是中性粒细胞所特有,即使在有强吞噬作用的巨噬细胞中也极少或完全没有这种
钙的生理功能有哪些
钙的生理功能有如下几个方面: 1、钙参与神经肌肉的应激过程,能促进神经介质的释放,调节激素的分泌,维持神经冲动的传导和心脏的跳动。钙还有镇静作用,体内缺钙时,可引起神经的兴奋性增高,导致抽搐、婴儿手足抽搐症、喉痉挛、失眠、乏力、食欲不振、夜啼、烦躁、多汗、机体免疫力低下而易感染各种疾病。 2
概述光呼吸的生理功能
从碳素同化的角度看,光呼吸将光合作用固定的20%~40%的碳变为CO2放出;从能量的角度看,每释放1分子CO2需要消耗6.8个ATP和3个NADPH。显然,光呼吸是一种浪费。 CO2和O2竞争Rubisco的同一活性部位,并互为加氧与羧化反应的抑制剂。Rubisco催化反应的方向,是进行光合作
简述清蛋白的生理功能
白蛋白在机体中具有重要的生理功能: ①白蛋白能维持血浆胶体渗透压的恒定 ②白蛋白属于非专一性的运输蛋白,能与体内许多难溶性的小分子有机物和无机离子可逆地结合形成易溶性的复合物,成为这些物质在血液循环中的运输形式 ③白蛋白能保证细胞内液、细胞外液与组织液间的交流 ④白蛋白对球蛋白起到一种胶
维生素A的生理功能
维生素A是复杂机体必需的一种营养素,它以不同方式几乎影响机体的一切组织细胞。尽管是一种最早发现的维生素,但有关它的生理功能至今尚末完全揭开。维生素A最主要是生理功能包括:维持视觉维生素A可促进视觉细胞内感光色素的形成。全反式视黄醇可以被视黄醇异构酶催化为11-顺-视黄醇,进而氧化成11-顺-视黄醛,
木糖生理功能
1)不被消化吸收,没有能量值能zui大限度地满足爱吃甜品又担心发胖者的需求; 2)活化人体肠道内的双岐杆菌并促其生长,双岐杆菌是益菌,该菌越多越有益人体健康;食用木糖能改善人体的微生物环境,提高机体的免疫能力。 3)不被口腔内微生物所利用,具备膳食纤维的部分生理功能,可降低血清胆固醇的预
木糖生理功能
1)不被消化吸收,没有能量值能zui大限度地满足爱吃甜品又担心发胖者的需求; 2)活化人体肠道内的双岐杆菌并促其生长,双岐杆菌是益菌,该菌越多越有益人体健康;食用木糖能改善人体的微生物环境,提高机体的免疫能力。 3)不被口腔内微生物所利用,具备膳食纤维的部分生理功能,可降低血清胆固醇的预
好氧生物处理方法
活性污泥(activesludge)是微生物群体及它们所依附的有机物质和无机物质的总称,微生物群体主要包括细菌,原生动物和藻类等。活性污泥是一种好氧生物处理方法,最早是由1912年英国人Clark and Cage发现对废水进行长时间曝气会产生污泥并使水质明显改善,其后Arden and Lacke
植物的细胞壁的成分介绍
在初生(生长)植物细胞壁中,主要的碳水化合物是纤维素,半纤维素和果胶。 纤维素微纤维通过半纤维素系链连接以形成纤维素 - 半纤维素网络,其嵌入果胶底物中。 在初生细胞壁中最常见的半纤维素是木葡聚糖。在草的细胞壁中,木葡聚糖和果胶的丰度减少,部分被另一种半纤维素的葡糖醛酸阿拉伯木聚糖取代。 原代细胞壁
植物的细胞壁的结构特点
植物细胞的壁必须具有足够的抗拉强度,以承受几倍大气压的内部渗透压,这是由细胞内部溶液和外部溶液之间的溶质浓度差异引起的。 植物细胞壁的厚度在0.1到几μm之间变化。多细胞植物中的细胞壁 - 其不同的层和它们在原生质方面的位置(高度图解)在植物初生细胞壁的分子结构。在植物细胞壁中可以发现多达三个层:初
细菌细胞壁的外膜的介绍
也称外壁,是G-细菌所特有的结构。它位于细胞壁的最外层,厚18~20nm。由脂多糖、磷脂双分子层与脂蛋白组成。因含有脂多糖,也常被称为脂多糖层。外膜的内层是脂蛋白,连接着磷脂双分子层与肽聚糖层;中间是磷脂双分子层,它与细胞膜的脂双层非常相似,只是其中插有跨膜的孔蛋白;外层是脂多糖。
甘油磷酸的分子结构
有机化合物,是细菌细胞壁磷壁酸的主要成分之一。分子结构:甘油磷酸脂是常见的乳化剂具有亲水的头部和疏水的尾部。
活性肽的的生理功能介绍
目前,它成为全世界研究的热点、大量的国内外研究结果表明:生物活性肽是涉及生物体内多种细胞功能的生物活性物质,在生物体内已发现几百种,不同的生物肽具有不同的结构和生理功能,如抗病毒、抗癌、抗血栓、抗高血压、免疫调节、激素调节、抑菌、降胆固醇等作用。 活性肽的的生理功能如下: 1.调节体内的水分
关于NADH的生理功能的介绍
改善能量水平 NADH不仅作为有氧呼吸作用中重要的辅酶,NADH的[H]也携带大量能量。研究已经证实,细胞外使用NADH能促进细胞内ATP水平的上升,表明NADH能穿透细胞膜并提升细胞内的能量水平 。从宏观上而言,外源性补充NADH有助于恢复体力、增强食欲。并且NADH对大脑能量水平的提高也有
多不饱和脂肪酸的主要功效有哪些?
1.保持细胞膜的相对流动性,以保证细胞的正常生理功能。 2.使胆固醇酯化,降低血中胆固醇和甘油三酯。 3.降低血液粘稠度,改善血液微循环。 4.提高脑细胞的活性,增强记忆力和思维能力。 亚油酸的作用 亚油酸是人体必需脂肪酸,它具囱.预防胆l司醇过高、改善高血压、预防心肌梗死、预防胆剧醇
氨基酸代谢紊乱的主要原因是什么
包括先天因素和后天因素。 先天因素可分两类: ①酶的缺陷 使某种或某些氨基酸体内正常分解代谢受阻,该氨基酸的血液浓度显著升高,造成高氨基酸血症。血浆氨基酸水平过高,使滤入肾小管的氨基酸超过肾小管的重吸收能力,尿中氨基酸水平过高,形成高氨基酸尿症。用化学法、微生物法、电泳法及层析法可测定
小儿用氨基酸注射液的主要成分
由18种氨基酸组成,氨基酸含量为6.74%(按盐计算)。 L一异亮氨酸、L一丙氨酸、L一亮氨酸、L一脯氨酸、L一赖氨酸、L一精氨酸(L一醋酸赖氨酸)、L一丝氨酸、L一蛋氨酸、L一天门冬氨酸、L一苯丙氨酸、L一谷氨酸、L一苏氨酸、甘氨酸、L一色氨酸、L一酪氨酸、L一缬氨酸等. 吸收、分布、消除
多不饱和脂肪酸DHA和EPA的主要作用
从对包括人在内的动物的脑、视网膜和神经组织的分析可以发现,二十二碳六烯酸( doco-sahexaenoic acid.DHA)是其中的主要脂肪酸,是大脑及视网膜的正常发育及功能保持所必需的。其作用机制首先是由于高度的不饱和而形成一个高度流体性的膜环境,除此之外,它还具有不可替代的特殊作用机制。在脑
脱氧核苷酸有哪些主要价值?
脱氧核苷酸为白细胞、血小板、 T淋巴细胞及 NK细胞的增殖提供脱氧核苷酸原料,刺激上述细胞的增殖及分化成熟,促进骨髓释放白细胞,提高白细胞水平,减少重度骨髓抑制发生率,提高免疫功能,减少感染的发生。另外脱氧核苷酸通过补充机体肝脏、肌肉等全身的脱氧核苷酸,防止CSF过度动员骨髓造成的脱氧核苷酸转移
钴酸锂正极材料的锂离子电池的主要应用
采用钴酸锂正极材料的锂离子电池不适合大电流放电。过电流放电会缩短放电时间(内部温度升高,能量损失),并可能造成危险。而磷酸铁锂正极材料锂离子电池,可以是20C或更大(C是电池的容量,如C=800mAh,1C充电速率即充电电流为800mA)的大电流进行充放电,特别适合电动汽车使用。因此,电池制造厂