最新研究发现视听整合帮助树蛙识别不完整鸣叫

通讯信号的破碎化在自然环境中是常态,例如,森林中目标物体经常被部分遮挡,动物的叫声经常被噪音遮蔽或打断。长期的进化与适应,使人和许多动物具有一定的补全残缺信号的能力。当连续的声音被另一个短暂而响亮的声音(如咳嗽声)掩盖时,我们的听觉系统会积极填充遮蔽部分,仍可将残缺信号感知为一个完整的听觉信号。这种感知修复形式称作听觉诱导(auditory induction)或非模态补整(amodal completion)。非模态补整已在几种动物中被证明,包括一些灵长类和鸣禽(Miller et al., 2001)。在繁殖季节,蛙类的求偶场中充斥着各种遮蔽鸣声信号的声源(同种其他个体鸣叫或异种鸣叫),雌性在选择鸣叫个体作为配偶的过程中面临挑战。目前,关于无尾两栖类听觉诱导的研究较为有限,尚无研究证明无尾两栖类的鸣声通讯具有非模态补整。野外观察发现,锯腿原指树蛙(Kurixalus odontotarsus)在自然条件下偶尔发出部分音节......阅读全文

ISO-CAN总线通讯接口信号隔离模块应用

   顺源科技推出自主研发新产品: ISO CAN ,作为一款隔离型通用CAN收发器模块,其内置CAN总线通讯接口信号隔离及收发器件,具有成本低、体积小、使用方便等优点。主要功能是将CAN总线控制器的逻辑电平隔离转换为总线的差分电平,信号传输过程中隔离电压高达2500VDC。    ISO CA

西南科大:首次实现-原始细胞间的化学信号通讯

  日前,西南科技大学粘土矿物与生命起源课题组与英国布里斯托大学Stephen Mann院士课题组合作,在国际上首次实现了粘土矿物原始细胞间的化学信号通讯。相关成果发表在Wiley出版社微钠尺度研究领域综合性期刊《Small》上(中国科学院JCR分区工程技术类一区TOP期刊,影响因子8.36)。  

细胞通讯与细胞信号转导的分子机理

高等生物所处的环境无时无刻不在变化,机体功能上的协调统一要求有一个完善的细胞间相互识别、相互反应和相互作用的机制,这一机制可以称作细胞通讯(Cell Communication)。在这一系统中,细胞或者识别与之相接触的细胞,或者识别周围环境中存在的各种信号(来自于周围或远距离的细胞),并将其

锂电强光防爆电筒可用于信号通讯和方向显示

  锂电强光防爆电筒采用LED正白光,亮度高达160流明,点亮时间高达50000小时。高科技表面处理技术,反射效率高。照明距离可以达到100米以上,可见距离可以达到500米以上。它具有工作灯,强光和闪光灯,可用于照明或远程信号指示。角形灯头设计,可在紧急情况下用作应急防御工具。高能非记忆电池具有容量

细胞通讯的通讯方式

1.分泌化学信号进行通讯: 内分泌(endocrine)、旁分泌(paracrine)、自分泌(autocrine)、化学突触(chemical synapse);2.接触性依赖的通讯:细胞间直接接触,信号分子与受体都是细胞的跨膜蛋白的通讯方式;3.间隙连接实现代谢偶联或电偶联。

细胞通讯的主要通讯方式

1.分泌化学信号进行通讯: 内分泌(endocrine)、旁分泌(paracrine)、自分泌(autocrine)、化学突触(chemical synapse);2.接触性依赖的通讯:细胞间直接接触,信号分子与受体都是细胞的跨膜蛋白的通讯方式;3.间隙连接实现代谢偶联或电偶联

生物学家揭示树蛙如何保持脚上黏性

  想重新将一块已经粘满了灰尘的胶带黏在物体的表面绝对会让人发狂。那么,树蛙究竟如何圆满完成这项任务呢?  原来这种树栖的两栖动物会从它们的脚垫中分泌黏液,从而恢复每一步的黏性。参加在英国格拉斯哥市召开的实验生物学协会年会的生物学家发现,怀氏树蛙(Litoria caerulea,如

模拟微重力对辐射诱导个体间信号通讯作用研究中获进展

  深空载人飞行是航天发展的必然趋势,要实现人类在外太空长期驻留就必须建立良好的生命生态保障系统。植物能够提供食物、氧气和水的循环利用,是空间生命生态保障系统的核心组成。为了应对空间粒子产生的辐射损伤,植物会通过个体间的信号通讯进行预警,增加植物系统的稳定性。太空中的另一个重要环境因子是否会影响植物

细胞通讯方式

  单细胞生物仅与环境交换信息,高等生物则根据自然需求进化出一套精细的调控通讯系统,以保持所有细胞行为的协调统一。细胞间主要以如下三种方式进行联络(图21-1)。  图21-1 三种细胞通讯的基本方式  (一)细胞间隙连接  细胞间隙连接(Gap Junction)是一种细胞间的直接通讯方式

《通讯—材料》和《通讯—地球与环境》开放获取期刊

  记者2月18日从施普林格·自然中国办公室获悉,该集团新推出《通讯—材料》和《通讯—地球与环境》两本开放获取(OA)期刊。前者2月4日发表了首批论文,后者于2月12日开放投稿入口。图片来源于网络  据了解,《通讯—材料》刊发材料科学各个领域的重要研究,包括材料学与生物学、化学和物理学交叉领域的研究

噪音可通过交叉感官干扰影响树蛙的配偶选择

 通讯过程经常受到噪音的干扰。如何在噪声环境中有效地传输和识别信号是人和动物面临的一个严峻挑战。有观点认为多模信号可以提高嘈杂环境中的通讯效率。例如,当听觉通道被噪声掩盖,人和动物会更多地依赖其他感觉通道(视觉、嗅觉等),这种策略被称为多模转换(multimodal shift)。已有研究表明,环境

研究发现树蛙科系统发育和进化新进展

  稳健的系统发育假说是生物多样性和进化研究的基础,其对于解决分类争议,理解演化历程和解析分化模式至关重要。树蛙科(Rhacophoridae)隶属于两栖纲Amphibia、无尾目Anura,多样性丰富,目前已描述有约19个属420个物种,广泛分布于东亚、东南亚、南亚和非洲地区。该类群表现出多样的性

最新研究发现视听整合帮助树蛙识别不完整鸣叫

  通讯信号的破碎化在自然环境中是常态,例如,森林中目标物体经常被部分遮挡,动物的叫声经常被噪音遮蔽或打断。长期的进化与适应,使人和许多动物具有一定的补全残缺信号的能力。当连续的声音被另一个短暂而响亮的声音(如咳嗽声)掩盖时,我们的听觉系统会积极填充遮蔽部分,仍可将残缺信号感知为一个完整的听觉信号。

环境噪音会干扰动物利用视觉线索选择配偶

中新网成都8月8日电 (记者 贺劭清)记者8日从中国科学院成都生物研究所(简称“中科院成都生物所”)获悉,中科院成都生物所动物行为与仿生项目组研究发现,噪音干扰下蛙类视听多模信号的通讯效率显著下降,噪音可以通过交叉感官干扰影响动物的配偶选择。该结果为噪声的交叉感官干扰提供了新的证据,首次证明了环境噪

成都生物所揭示“飞蛙”滑翔的遗传机制

  动物复杂性状是动物长期适应演化的结果,是动物多样性形成的重要基础。自然界物种采取各种各样的进化策略以适应不同的栖息地,如高原、海洋、荒漠等。部分类群通过演化出了特殊的表型以适应树栖生活。树栖生活拓展了这些物种对垂直空间资源的利用,有助于它们躲避天敌,获取丰富的食物资源等。而森林环境复杂的立体结构

成都生物所揭示“飞蛙”滑翔的遗传机制

  动物复杂性状是动物长期适应演化的结果,是动物多样性形成的重要基础。自然界物种采取各种各样的进化策略以适应不同的栖息地,如高原、海洋、荒漠等。部分类群通过演化出了特殊的表型以适应树栖生活。树栖生活拓展了这些物种对垂直空间资源的利用,有助于它们躲避天敌,获取丰富的食物资源等。而森林环境复杂的立体结构

蛙!科研人员取消侏灌树蛙在我国分布记录

   1月14日从中国科学院西双版纳热带植物园了解到,科研人员近日在云南边境地区灌树蛙属分类问题上取得进展,取消侏灌树蛙在我国的分布记录,还发现灌树蛙属两个新种——勐海灌树蛙和黄连山灌树蛙。研究结果近日发表于学术期刊《亚洲两栖爬行动物研究》上。 为了解决灌树蛙属分类问题,中国科学院成都生物研究所

树蛙为何“祖传”滑翔技能?破解它或有助防治人类疾病

  动物的复杂性状可以分为表型连续分布的经典数量性状、表型间断分布的性状以及其他难以准确度量的动物各类行为和心理等。经典数量性状包括身高、寿命、体重等;表型间断分布的性状主要指人类复杂疾病和动植物复杂抗性性状等,如精神分裂、高血压、骨质疏松、植物抗病性状等。  “物竞天择,适者生存”,古往今来,这一

印尼丛林发现新种树蛙:鼻子似木偶匹诺曹

这种长鼻子树蛙是科学界发现的一种全新物种。研究人员在露营地的米袋子上发现这种蛙。史密森学会的生物学家克里斯托弗・赫尔根发现的这种沙袋鼠,是目前已知的世界上最小的袋鼠家族成员。  据国外媒体报道,最近保护国际基金会的科学家在印尼福贾山(

印尼发现珍稀长鼻树蛙-鼻子如小木偶可变化(图)

在印尼发现的这种长鼻树蛙鼻子很奇特,像小木偶一样有变化科学家在印尼发现新物种黄眼壁虎  中新网5月18日电 据台湾《苹果日报》网站18日报道,科学家在印度尼西亚山区发现了一些奇特的物种,如长有小木偶匹诺曹般长鼻子的青蛙、有三色羽毛的鸽子、黄眼睛的壁虎等,经两年

热分析应用通讯

在1887年,Henry Le Chatelier用粘土做了第一个热分析实验,在1899年,WilliamRoberts-Austen进行了第一次差热分析实验。从那时候起,热分析就广泛应用在各类材料的研究实验中,并且研究领域不断拓展。作为全球热分析仪器的领导者,从我们的角度来看,更优异的性能和更方便

LSCM细胞间通讯

细胞间通讯 共聚焦激光扫描显微镜可采用荧光光漂白恢复(fluorescence recovery after photobleading,FRAP)技术检测细胞缝隙连接通讯,该方法的原理是一个细胞内的荧光分子被激光漂白或淬灭,失去发光能力。而临近未被漂白细胞中的荧光分子可通过缝隙连接扩散到已被漂白的

细胞通讯的应用

神经、内分泌与免疫调控系统的信号传导与基因表达调控是动物生理生化的基础,系统生物学与合成生物学分析生物系统的细胞内外通讯过程的分子相互作用、基因调控网络系统及其人工设计与合成,从而开拓了细胞通讯的生物系统研究与人工生物系统开发等。

最新研究在灌树蛙属分类学研究中取得进展

  灌树蛙属Raorchestes由Biju等学者于2010年建立,隶属于树蛙科Rhacophoridae,该属物种的体型较小,体长15-45 mm,常栖息于灌木丛中,繁殖方式为直接发育,即蝌蚪在卵内完成变态过程,直接孵化出幼蛙。该属包含68个物种,其中多数物种分布在印度(尤其是西高止山脉),此外还

Cell:“致命”的细胞通讯

  五月十五日,墨尔本的科学家在Cell杂志上发表了惊人的发现,疟原虫能够在人体内通过类似胞外体的囊泡相互“交谈”。研究人员指出,这种社会性行为能够帮助寄生虫生存,增加它们成功感染其他人的机会。   细胞间通讯是进行信息交换的重要机制,能够影响种群密度和分化。这项研究为人们展示了疟原虫的交流途径,

细胞通讯的生理意义

多细胞生物是由不同类型的细胞组成的社会, 而且是一个开放的社会,这个社会中的单个细胞间必须协调它们的行为,为此,细胞建立通讯联络是必需的。如生物体的生长发育、分化、各种组织器官的形成、组织的维持以及它们各种生理活动的协调, 都需要有高度精确和高效的细胞间和细胞内的通讯机制。是指一个细胞发出的信息通过

细胞通讯的生理意义

多细胞生物是由不同类型的细胞组成的社会, 而且是一个开放的社会,这个社会中的单个细胞间必须协调它们的行为,为此,细胞建立通讯联络是必需的。如生物体的生长发育、分化、各种组织器官的形成、组织的维持以及它们各种生理活动的协调, 都需要有高度精确和高效的细胞间和细胞内的通讯机制。是指一个细胞发出的信息通过

细胞通讯的应用介绍

神经、内分泌与免疫调控系统的信号传导与基因表达调控是动物生理生化的基础,系统生物学与合成生物学分析生物系统的细胞内外通讯过程的分子相互作用、基因调控网络系统及其人工设计与合成,从而开拓了细胞通讯的生物系统研究与人工生物系统开发等。 

通讯领域的革命:石墨烯涂层可将通讯速度提高近百倍

  来自英国巴斯大学以及埃克塞特大学的研究人员发现,将石墨烯用于通讯设备中,可以将通讯速度提高近百倍。   在《物理评论通讯》期刊中,来自巴斯大学以及埃克塞特大学石墨烯科学研究中心的研究人员首次利用石墨烯来缩短通讯的光学响应率,这将有可能引起通讯领域的一场革命。   每天,都有海量的通

成都生物所为解决复杂物种的分类问题提供分子证据

  物种是分类学的基本单位,而且也是进化生物学的基础和核心。解决复杂物种的分类问题是生物科学的基础研究,对物种的生态和保护研究有着重要的意义。   泛树蛙属广泛分布于东亚、东南亚和南亚,包括日本、印度尼西亚、马来西亚、菲律宾、越南、老挝、缅甸、印度、中国等国家。长期以来,由于泛树蛙属内物种具有相似