DROSHA基因的结构及作用
双链(ds)RNA特异性内核糖核酸酶III超家族成员参与真核细胞和原核细胞的多种RNA成熟和衰变途径(Fortin等人,2002[PubMed 12191433])。RNase III Drosha是核心核酸酶,执行细胞核中microRNA(microRNA)处理的起始步骤(Lee等人,2003[PubMed 14508493])。......阅读全文
DROSHA基因的结构及作用
双链(ds)RNA特异性内核糖核酸酶III超家族成员参与真核细胞和原核细胞的多种RNA成熟和衰变途径(Fortin等人,2002[PubMed 12191433])。RNase III Drosha是核心核酸酶,执行细胞核中microRNA(microRNA)处理的起始步骤(Lee等人,2003[P
与肾癌相关的基因突变类型DROSHA基因
双链(ds)RNA特异性内核糖核酸酶III超家族成员参与真核细胞和原核细胞的多种RNA成熟和衰变途径(Fortin等人,2002[PubMed 12191433])。RNase III Drosha是核心核酸酶,执行细胞核中microRNA(microRNA)处理的起始步骤(Lee等人,2003[P
CRKL基因的结构及作用
该基因编码一个包含sh2和sh3(SRC同源)结构域的蛋白激酶,该结构域已被证明激活ras和jun激酶信号通路并以ras依赖的方式转化成纤维细胞。是bcr-abl酪氨酸激酶的底物,在bcr-abl的成纤维细胞转化中起作用,可能致癌。
MPL基因的结构及作用
MPL基因编码的蛋白为促血小板生成素受体,与NF-κB以及JAK/STAT信号通路相关。
KLLN基因的结构及作用
这种无内含子基因编码的蛋白质存在于细胞核中,在那里它可以抑制DNA合成,促进S相停滞,并与凋亡相结合。这种DNA结合蛋白的表达被转录因子p53上调。
EPAS基因的结构及作用
该基因编码一个转录因子,参与氧调节基因的诱导,随着氧水平的下降而诱导。编码蛋白包含一个基本的螺旋-环-螺旋结构域蛋白二聚结构域以及一个在信号转导途径中发现的对氧水平有反应的结构域。该基因突变与红细胞增多症家族性4型有关。
FLCN基因的结构及作用
该基因位于17号染色体的Smith-Magenis综合征区域。该基因突变与Birt-Hogg-Dube综合征有关,后者以纤维滤泡瘤、肾肿瘤、肺囊肿和气胸为特征。该基因的选择性剪接导致编码不同亚型的两个转录变体。
micrornas基因的结构及作用
micrornas(micrornas)是短的(20-24nt)非编码RNAs,通过影响mRNas的稳定性和翻译,参与多细胞生物中基因表达的转录后调控。小RNA被RNA聚合酶II转录,作为可编码蛋白质或不编码的有帽和多聚腺苷酸化的初级转录物(pri-mirnas)的一部分。初级转录物被Drosha核
PTPRF基因的结构及作用
该基因编码的蛋白是蛋白酪氨酸磷酸酶(PTP)家族的成员。众所周知,PTP是调节多种细胞过程的信号分子,包括细胞生长、分化、有丝分裂周期和致癌转化。该PTP具有一个细胞外区、一个跨膜区和两个串联胞质内催化域,因此代表一种受体型PTP。细胞外区包含3个免疫球蛋白样结构域,9个非免疫球蛋白样结构域与神经细
ASNS基因的结构及作用
这个基因编码的蛋白质参与天冬酰胺的合成。这个基因补充了温度敏感型仓鼠突变体TS11的突变,该突变体在非耐受温度下阻止细胞周期G1期的进展。另外,还描述了该基因的剪接转录变体。
NCOA基因的结构及作用
该基因编码的蛋白是一种与核激素受体相互作用以增强其转录激活功能的核受体辅活化子。编码蛋白具有组蛋白乙酰转移酶活性,并招募p300/cbp相关因子和creb结合蛋白作为多亚单位协同激活复合物的一部分。这种蛋白质最初在细胞质中发现,但在磷酸化后转移到细胞核中。一些转录变体编码不同的亚型已被发现的这个基因
ERG基因的结构及作用
该基因编码一个转录因子的红细胞转化特异性(ETS)家族成员。这个家族的所有成员都是胚胎发育、细胞增殖、分化、血管生成、炎症和凋亡的关键调节者。该基因编码的蛋白质主要在细胞核内表达。包含一个ets-dna结合域和一个与嵌合癌蛋白的自结合有关的pnt(尖)域。这种蛋白是血小板粘附在内皮下,诱导血管细胞重
FGA基因的结构及作用
这个基因编码凝血因子纤维蛋白原的α亚单位,它是血凝块的组成部分。血管损伤后,编码的前蛋白在纤维蛋白原转化为纤维蛋白的过程中被凝血酶蛋白水解。该基因突变可导致多种疾病,包括纤维蛋白原异常、低纤维蛋白原血症、无纤维蛋白原血症和肾淀粉样变性。选择性剪接导致多个转录变体,其中至少一个编码经历蛋白水解处理的亚
FOS基因的结构及作用
fos基因家族由4个成员组成:fos、fosb、fosl1和fosl2。这些基因编码亮氨酸拉链蛋白,可与Jun家族的蛋白质二聚,从而形成转录因子复合物AP-1。因此,fos蛋白被认为是细胞增殖、分化和转化的调节因子。在某些情况下,fos基因的表达也与凋亡细胞死亡有关。
PTPRD基因的结构及作用
该基因编码的蛋白是蛋白酪氨酸磷酸酶(PTP)家族的成员。众所周知,PTP是调节多种细胞过程的信号分子,包括细胞生长、分化、有丝分裂周期和致癌转化。该PTP包含一个细胞外区、一个单跨膜段和两个串联胞质内催化域,因此代表一种受体型PTP。该蛋白的细胞外区由三个免疫球蛋白样结构域和八个纤维连接蛋白III型
MYB基因的结构及作用
该基因编码一种具有三个HTH-DNA结合域的蛋白质,作为转录调节器。这种蛋白在造血调节中起着重要作用。该基因可能在白血病和淋巴瘤中异常表达、重排或易位,被认为是癌基因。选择性剪接导致多个转录变体。
胆管癌相关的DROSHA基因突变类型及临床解释
双链(ds)RNA特异性内核糖核酸酶III超家族成员参与真核细胞和原核细胞的多种RNA成熟和衰变途径(Fortin等人,2002[PubMed 12191433])。RNase III Drosha是核心核酸酶,执行细胞核中microRNA(microRNA)处理的起始步骤(Lee等人,2003[P
与肾癌相关的DROSHA基因编码功能描
双链(ds)RNA特异性内核糖核酸酶III超家族成员参与真核细胞和原核细胞的多种RNA成熟和衰变途径(Fortin等人,2002[PubMed 12191433])。RNase III Drosha是核心核酸酶,执行细胞核中microRNA(microRNA)处理的起始步骤(Lee等人,2003[P
DROSHA基因突变与药物因子介绍
双链(ds)RNA特异性内核糖核酸酶III超家族成员参与真核细胞和原核细胞的多种RNA成熟和衰变途径(Fortin等人,2002[PubMed 12191433])。RNase III Drosha是核心核酸酶,执行细胞核中microRNA(microRNA)处理的起始步骤(Lee等人,2003[P
CASR基因的结构特点及作用
这个基因编码的蛋白质是一种质膜G蛋白偶联受体,能感觉到循环钙浓度的微小变化。编码的蛋白质将这些信息与细胞内的信号传导途径结合起来,这些信号传导途径可以调节甲状旁腺激素的分泌或肾离子的处理,因此这种蛋白质在维持矿物离子的稳态中起着至关重要的作用该基因突变是家族性低钙血症、新生儿重度甲状旁腺功能亢进和常
CAST基因的结构特点及作用
该基因编码的蛋白质是一种内源性钙蛋白酶(钙依赖半胱氨酸蛋白酶)抑制剂它由一个N-末端结构域L和四个重复的钙蛋白酶抑制结构域(结构域1-4)组成,参与淀粉样前体蛋白的蛋白水解。calpain/calpastatin系统参与许多膜融合事件,如神经囊泡胞吐、血小板和红细胞聚集编码的蛋白质也被认为会影响编码
GMPS基因的结构及主要作用
在嘌呤核苷酸的从头合成中,IMP是支点代谢物,在支点代谢物处,途径分化为鸟嘌呤或腺嘌呤核苷酸的合成。在鸟嘌呤核苷酸途径中,有2种酶参与IMP转化为GMP,即IMP脱氢酶(IMPd1),它催化IMP氧化成XMP和GMP合成酶,催化XMP向GMP的胺化。
Gopc基因的结构及主要作用
该基因编码一个具有PDZ结构域的高尔基蛋白PDZ结构域是球状的,含有它们的蛋白质通过C末端附近的短基序与其他蛋白质结合缺乏原代蛋白的小鼠有球形精子症,并且不育。已发现该基因编码不同亚型的多个转录变体。
AMOT基因的结构特点及作用
该基因属于血管抑制素结合蛋白的motin家族,具有保守的螺旋结构域和C末端PDZ结合基序编码蛋白主要在毛细血管内皮细胞和胎盘大血管中表达,可能介导血管抑制素对血管形成的抑制作用,以及在新生血管形成过程中内皮细胞向生长因子的迁移。选择性剪接导致编码不同亚型的多个转录变体。
AXL基因的结构特点及作用
酪氨酸蛋白激酶受体UFO是一种人类由AXL基因编码的酶。 该基因最初被命名为UFO,因为这种蛋白质的功能不明。 然而,自其发现以来的几年中,对AXL表达谱和机制的研究使其成为一个越来越有吸引力的目标,特别是对于癌症治疗。 近年来,AXL已成为癌症细胞免疫逃逸和耐药性的关键促进因素,导致侵袭性和转移性
BMX基因的结构特点及作用
该基因编码一个属于Tec激酶家族的非受体酪氨酸激酶该蛋白包含一个PH样结构域,通过结合磷脂酰肌醇3,4,5-三磷酸(PIP3)介导膜靶向性,以及一个结合酪氨酸磷酸化蛋白和信号转导功能的SH2结构域该蛋白参与多种信号转导途径,包括stat途径,并调节多种癌细胞的分化和致瘤性。另外,已经发现该基因的剪接
FASLG基因的结构特点及作用
这个基因是肿瘤坏死因子超家族的成员编码的跨膜蛋白的主要功能是通过与fas结合诱导细胞凋亡。Fas/FasLG信号通路是免疫系统调节的关键,包括T细胞的活化诱导的细胞死亡(AICD)和细胞毒性T淋巴细胞诱导的细胞死亡。它也与一些癌症的进展有关。该基因缺陷可能与系统性红斑狼疮(sle)有关。另外,已经描
ALCAM基因的结构特点及作用
该基因编码激活的白细胞粘附分子(alcam),也称为CD166(分化簇166),是免疫球蛋白受体的一个亚家族的成员,在细胞外区域有五个免疫球蛋白样结构域(vvc2c2c2)。该蛋白与T细胞分化抗原CD6结合,参与细胞粘附和迁移过程。发现了编码不同亚型的多种选择性剪接转录变体。
AHNAK基因的结构特点及作用
该基因编码的蛋白是一个大的(700kda)结构支架蛋白,由一个具有128个a a重复序列的中心结构域组成。编码蛋白可能在血脑屏障形成、细胞结构和迁移、心肌钙通道调节、肿瘤转移等多种过程中发挥作用。编码该基因的17 kDa亚型存在更短的变体,更短的异构体启动调节该基因的选择性剪接的反馈环。
BLCAP基因的结构特点及作用
这个基因编码一种通过刺激细胞凋亡来减少细胞生长的蛋白质。选择性剪接和选择性启动子的使用导致编码相同蛋白质的多个转录变体。这个基因在大脑中留下印记,在那里不同的转录变体从每个父母等位基因表达。上游启动子起始的转录变异体优先从母体等位基因表达,而散布的NNAT基因(GeneID:4826)下游起始的转录