迈克尔逊干涉仪实验中是如何测量光波波长的

(一)调整迈克尔逊干涉仪,观察非定域干涉、等倾干涉的条纹① 对照实物和讲义,熟悉仪器的结构和各旋钮的作用;② 点燃He—Ne激光器,使激光大致垂直M1。这时在屏上出现两排小亮点,调节M1和M2背面的三个螺钉,使反射光和入射光基本重合(两排亮点中最亮的点重合且与入射光基本重合)。这时,M1 和M2大致互相垂直,即M1/、M2大致互相平行。③ 在光路上放入一扩束物镜组,它的作用是将一束激光汇聚成一个点光源,调节扩束物镜组的高低、左右位置使扩束后的激光完全照射在分光板G1上。这时在观察屏上就可以观察到干涉条纹(如完全没有,请重复上面步骤)再调节M1下面的两个微调螺丝使M1/、M2更加平行,屏上就会出现非定域的同心圆条纹。④ 观察等倾干涉的条纹。(二)测量He—Ne激光的波长① 回到非定域的同心圆条纹,转动粗动和微动手轮,观察条纹的变化:从条纹的“涌出”和“陷入”说明M1/、M2之间的距离d是变大?变小?观察并解释条纹的粗细、疏密和d的......阅读全文

迈克尔逊干涉仪的HeNe激光器的激光的波长是多少

干涉仪中的He-Ne红光激光器的波长632.8nm其他波长段的He-Ne激光器还有543nm、594.1nm、611.9nm

什么是干涉仪

 利用干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程

什么是干涉仪

 利用干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程

迈克尔逊干涉仪非线性型简介

  在所谓非线性迈克尔逊干涉仪中,标准的迈克尔逊干涉仪的其中一条干涉臂上的平面镜被替换为一个Gires-Tournois干涉仪或Gires-Tournois标准具,从Gires-Tournois标准具出射的光场和另一条干涉臂上的反射光场发生干涉。由于Gires-Tournois标准具导致的相位变化和

使用迈克尔逊干涉仪的注意事项介绍

  1、迈克尔逊干涉仪千万不要用手触摸光学表面,且要防止唾液溅到光学表面上。  2、迈克尔逊干涉仪在调节螺钉和转动手轮时,一定要轻、慢,决不能强扭硬扳。  3、迈克尔逊干涉仪反射镜背后的粗调螺钉不可旋得太紧,用来防止镜面的变形。  4、迈克尔逊干涉仪在调整反射镜背后粗调螺钉时,先要把微调螺钉调在中间

关于非线性型迈克尔逊干涉仪的基本介绍

  在所谓非线性迈克尔逊干涉仪中,标准的迈克尔逊干涉仪的其中一条干涉臂上的平面镜被替换为一个Gires-Tournois干涉仪或Gires-Tournois标准具,从Gires-Tournois标准具出射的光场和另一条干涉臂上的反射光场发生干涉。由于Gires-Tournois标准具导致的相位变化和

怎样调节迈克尔逊干涉仪使干涉条纹出现

先调两个反射镜基本与光线垂直,两束光光程基本相等,在分光板前放一个尖的物体,例如,笔,看到两个投影,调节反射镜背后的螺钉,使两个投影重合,干涉条纹出现。两束相干光线互相叠加,如果相位差等于零,则叠加后是亮条纹;如果相位差了180度,叠加后成了暗条纹。相干的意思是光束的频率是一样的。干涉比如像等倾干涉

单束光照射迈克尔逊干涉仪的工作原理

   干涉仪是由固定不动的反射镜M1(定镜),可移动的反射镜M2(动镜)及分光束器B组成,M1和M2是互相垂直的平面反射镜。B以45°角置于M1和M2之间,B 能将来自光源的光束分成相等的两部分,一半光束经B 后被反射,另一半光束则透射通过B 。在迈克尔逊干涉仪中,当来自光源的入射光经光分束器分成两

氦氖激光波长的测量

绝对误差是一定的,N越大,相对误差越少,测得越准。除去仪器误差,如果N=100,那么误差为1%,如果N=200,误差为1/200氦氖激光器中工作物质是氦气和氖气,其中氦气为辅助气体,氖气为工作气体。产生激光的是氖原子,不同能级的受激辐射跃迁将产生不同波长的激光,主要有632.8nm、1.15um和3

如何选择激发光波长和发射光波长

严格的说你的这个问题不是三言两语能讲清楚的,最好参考有关书籍,如近期出版的【荧光分析法】一书。同时也不知你使用的是何种型号的仪器,只能简单的略说一二:(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200

如何选择激发光波长和发射光波长

严格的说你的这个问题不是三言两语能讲清楚的,最好参考有关书籍,如近期出版的【荧光分析法】一书。同时也不知你使用的是何种型号的仪器,只能简单的略说一二:(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200

如何选择激发光波长和发射光波长

严格的说你的这个问题不是三言两语能讲清楚的,最好参考有关书籍,如近期出版的【荧光分析法】一书。同时也不知你使用的是何种型号的仪器,只能简单的略说一二:(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200

如何选择激发光波长和发射光波长

(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200nm,然后进行发射波长(EM)模式扫描,(EM)波长范围暂设定为210-800nm,然后记录所有出现的峰值波长;改变激发波长(EX)后再扫描,如第二次

如何选择激发光波长和发射光波长

严格的说你的这个问题不是三言两语能讲清楚的,最好参考有关书籍,如近期出版的【荧光分析法】一书。同时也不知你使用的是何种型号的仪器,只能简单的略说一二:(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200

如何选择激发光波长和发射光波长

激发光波长:在效果相同的情况下,光源容易得到。发射光波长:在效果相同的情况下,波长容易检测得到。如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200nm,然后进行发射波长(EM)模式扫描,(EM)波长范围暂设定为210-800nm,然后记录所有出现的峰值波长;改变激发波长(EX)后再扫

关于分光计测量光波波长的实验介绍

  分光计测量光波波长是一个物理实验,目的是了解衍射光栅的特点及其在光谱仪器中的应用和学会分光光度计的调整与使用,原理是当一束平行光垂直入射到光栅上,产生一组明暗相间的衍射条纹。  分光计测量光波波长的实验目的:  1、了解衍射光栅的特点及其在光谱仪器中的应用。  2、学会分光光度计的调整与使用。 

简述迈克尔逊莫雷实验的实验背景

  迈克尔逊-莫雷实验的背景:19 世纪流行着一种“以太”学说,它是随着光的波动理论发展起来的。那时,由于对光的本性知之甚少,人们套用机械波的概念,想像必然有一种能够传播光波的弹性物质,它的名字叫“以太”。许多物理学家们相信“以太”的存在,把这种无处不在的“以太”看作绝对惯性系,用实验去验证“以太”

测量氦氖激光波长的公式

测量氦氖激光波长的公式:k*D*lamda/d k=0,1,2。测波长的话需要光谱仪,不过氦氖激光器的波长都是很稳定的,不像半导体激光器了。直条纹是等厚干涉条纹,实际上也是有点弯的,只不过弯的不大,所以看不出来。当往等倾干涉调节以后,弯曲越来越明显,就变成弧形条纹,最后变成同心圆环。出现反射像完全是

如何选择激发波长和荧光波长

先固定发射波长,测定激发光谱;再固定激发波长,测定发射光谱;通常选择在最大激发波长和最大发射波长进行物质测定 。荧光光谱先要知道荧光,荧光是物质吸收电磁辐射后受到激发,受激发原子或分子在去激发过程中再发射波长与激发辐射波长相同或不同的辐射。当激发光源停止辐照试样以后,再发射过程立刻停止,这种再发射的

分光计测量光波波长实验光谱衍射角的测量

  分光计测量光波波长实验光谱衍射角的测量:  (1)此时,黄色狭缝象(0级)、绿色光栅表面反射叉丝像及望远镜目镜分划板中心三者重合,记下0级位置Φ0  (2)转动望远镜,寻找1级衍射光(+1级或-1级),用目镜分划板十字叉丝分别瞄准入1、入2两波长的衍射像,记下Φ1、Φ2角度值。  (3)根据光栅

简述分光计测量光波波长实验的注意事项

  分光计测量光波波长实验的注意事项:  1、测量前,一定将仪器调整为黄色狭缝象(0级)、光栅表面绿色反射像、望远镜目镜分划板十字叉丝三者同时成清晰像,否则会造成较大的测量误差。  2、手动找到两波长衍射像后,将望远镜锁紧,旋转微调螺钉瞄准、读数。

关于迈克尔逊莫雷实验的基本介绍

  迈克尔逊-莫雷实验(Michelson-Morley Experiment),是1887年迈克尔逊和莫雷在美国克利夫兰做的用迈克尔逊干涉仪测量两垂直光的光速差值的一项著名的物理实验。但结果证明光速在不同惯性系和不同方向上都是相同的,由此否认了以太(绝对静止参考系)的存在,从而动摇了经典物理学基础

关于迈克尔逊莫雷实验的实验再验证介绍

  1893年洛奇在伦敦发现,光通过两块快速转动的巨大钢盘时,速度并不改变,表明钢盘并不被以太带着转。对恒星光行差的观测也显示以太并不随着地球转动。  人们在不同地点、不同时间多次重复了迈克尔逊-莫雷实验,并且应用各种手段对实验结果进行验证,精度不断提高。除光学方法外,还有使用其他技术进行的类似实验

光的波长是多少

光的波长是:红:770~622nm;橙:622~597nm;黄:597~577nm;绿:577~492nm;蓝、靛:492~455nm;紫:455~350nm。利用光波作为载频和光纤作为传输媒质的一种通信方式。它工作在近红外区,即波长是0.8μm(微米)---1.8μm,对应的频率为167THz--

光的波长是多少

光的波长是:红:770~622nm;橙:622~597nm;黄:597~577nm;绿:577~492nm;蓝、靛:492~455nm;紫:455~350nm。利用光波作为载频和光纤作为传输媒质的一种通信方式。它工作在近红外区,即波长是0.8μm(微米)---1.8μm,对应的频率为167THz--

傅里叶变换红外光谱仪的光学原理

傅立叶变换红外光谱仪的典型光路系统,来自红外光源的辐射,经过凹面反射镜使成平行光后进入迈克尔逊干涉仪,离开干涉仪的脉动光束投射到一摆动的反射镜B,使光束交替通过样品池或参比池,再经摆动反射镜C(与B同步),使光束聚焦到检测器上。 傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的能量经

干涉测量法的工作原理是什么?

  干涉测量法的工作原理是什么?   简介   迈克尔逊干涉仪是干涉测量中常用的工具,由Albert Abraham Michelson(首位获得诺贝尔科学奖的美国人)于1887年发明。他发明了镜组和半透半反镜组(分光镜)系统,可将来自相同光源的分离光束融合在一起进行干涉测量。激光干涉测量法是一

关于分光计测量光波波长实验的仪器调整部分

  (1)分光计测量光波波长实验的望远镜部分的调节  望远镜的作用是将平行光会聚到它的焦平面上,为了实现这一目的,我们先调叉丝,使它准确的成像在焦平面上,为此我们先打开变压器,通过望远镜可以看到绿色的游标叉丝,然后调节目镜使看到的叉丝最清晰,但这时叉丝不一定处在望远镜的焦平面上,为此载物台上放一平面

关于迈克尔逊莫雷实验方法的介绍

  迈克尔逊-莫雷实验方法是支持爱因斯坦提出狭义相对论两个基本原理之一的光速不变原理的主要实验方法。它是1887年由迈克尔逊-莫雷设计的。光源S发出的光线在半反射镜M上分为两束,一束透过M被M1反射面到M,再被M反射而达到目镜T;另一束被M反射至M2,再反射回M直达目镜T。调节两臂长度,使两束光的有

傅立叶变换红外光谱仪的光学原理

  傅立叶变换红外光谱仪的典型光路系统,来自红外光源的辐射,经过凹面反射镜使成平行光后进入迈克尔逊干涉仪,离开干涉仪的脉动光束投射到一摆动的反射镜B,使光束交替通过样品池或参比池,再经摆动反射镜C(与B同步),使光束聚焦到检测器上。  傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的