闪烁型探测器的光电倍增管简介

它是闪烁探测器的最重要部件之一。其组成成份是光阴极和倍增电极,光阴极的作用是将闪烁体的光信号转换成电信号,倍增电极则充当一个放大倍数大于1000000的放大器,光阴极上产生的电子经加速作用飞到倍增电极上,每个倍增电极上均发生电子的倍增现象,倍增极的培增系数与所加电压成正比例,所以光电倍增管的供电电源必须非常稳定,保证倍增系数的变化最小,在没有入射的射线时,光电倍增管自身由于热发射而产生的电子倍增称为暗电流。用光电倍增管探测低能核辐射时,必须减小暗电流。保持测量空间环境内较低的室温,是减小光电倍培管暗电流的有效方法。......阅读全文

光探测器的类型简介

  光电倍增管  由光电阴极和装在真空管内的倍增器组成,有很高的增益和很低的噪声,但尺寸较大且需要较高的偏置电压,不适合光纤通信系统。  热电探测器  包含了从热能到光能的转换,这种探测器的响应在相当宽的光谱范围内都是平坦的,但响应速度很慢也不适合光纤通信系统。  半导体光探测器  在半导体光探测器

伽玛暴偏振探测仪(POLAR)

伽玛暴偏振探测仪(POLAR)是专门用于测量伽玛暴偏振的高灵敏度探测器,它是中国科学院高能物理研究所牵头,瑞士日内瓦大学、PSI、波兰核物理研究所参加的国际合作项目。 2013年8月完成POLAR初样的研制,转入正样研制。预期2014年完成正样研制,2015年随天宫实验室二号发射升空。 PO

光电倍增管家族的多领域应用

科学新发现、理解大自然的根本动力是好奇心,人们又通过对自然的仔细思考和实验推动了科学的发展。在追寻未知未涉的过程中,最简单的探测和记录装置就是我们人类自身的感觉器官,但是对于现代科学,这种“自然”的探测器要么灵敏度不够,要么适用范围不广。就拿我们人眼为例,要产生视觉影像至少得几十个光子,而一个光电倍

半导体探测器简介

  半导体探测器是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似,故又称固体电离室。半导体探测器的基本原理是带电粒子在半导体探测器的灵敏体积内产生电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号。常用半导体探测器有 P-N结型半导体探测器、 锂漂

半导体探测器简介

半导体探测器(semiconductor detector)是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似。半导体探测器发现较晚,1949年麦凯(K.G.McKay)首次用α 射线照射PN结二极管观察到输出信号。5O年代初由于晶体管问世后,

可燃气体检测仪催化燃烧型气体探测器简介

  催化燃烧型气体探测器  用以监测周围空气中可燃气体从0~100%LEL范围内的变化。该传感器采用催化燃烧技术,传感器可在现场更换。催化燃烧型传感器对于种类繁多的可燃性气体有敏锐的反应。该技术对于可燃性气体具有普遍适用性。传感器经特殊设计有防中毒功能,能在多数工业环境中可靠工作五到十年。

如何检测核辐射,原理解析

核辐射检测仪是可以指示、记录和测量核辐射的一种辐射检测仪器。        那么,核辐射检测仪是如何准确的检测辐射含量的呢?原理是 辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量

光电探测器的工作原理简介

  光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。  光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一

X射线探测器的发展简介

  增大z轴的覆盖宽度  从发展的角度看,希望X射线管旋转一周就能获得更多的层面,即可完成一个脏器的扫描,实现所谓的容积扫描(Volume Scan)。为此势必要增大探测z轴的覆盖宽度,要想延长z轴的覆盖宽度,不仅取决于增加探测器的排数,建立更多的数据采集通道同样非常重要,这样才能既保证Z轴的覆盖宽

燃气探测器的工作原理简介

  可燃气体探测器采用高品质气体传感器,微处理器结合精密温度传感器能够智能补偿气敏元件的漂移,环境适应范围宽,工作稳定,无需调试,采用吸顶安装方式,安装简单,接线方便,广泛用于家庭、宾馆、公寓等存在可燃气体的场所进行安全监控。可检测 天然气、液化石油气,人工煤气。  探测器工作电压为直流供电。报警后

如何探测电子?

如何探测电子?上文所提到的两种电子分别由不同种类的探测器探测。探测 BSE 时,固态探测器位于样品正上方,并环绕电子束分布,这样可以收集到zui大量的 BSE。另一方面,探测 SE 时,主要是用 E-T 探测器。它有一个内置于法拉第圆筒的闪烁体,圆筒带正电可以吸引 SE。闪烁体用以加速电子,并把它们

简介光电倍增管式光谱仪内部的工作原理

  被测灯发出的复色光在积分球内均匀混光后被光纤输入端头接收,并由光纤传送进入光谱仪,再经滤色进入输入狭缝,投射到光栅上对光谱光功率信号进行分解。  因为作为光电转换的光电倍增管本身无法区分光谱,所以由机械装置转动光栅来把一定带宽的单色光功率信号按照波长大小依次投射到输出狭缝,由紧贴狭缝的光电倍增管

新型微通道板型光电倍增管(MCPPMT)研制

        光电倍增管是粒子物理及核物理实验的通用部件,其主要作用是将光信号转换为电信号。在大型中微子实验中,其作为核心器件,将与中微子发生相互作用的液体闪烁体或者纯水发出的微弱光信号进行探测。        核探测与核电子学国家重点实验室的科研人员在2008年提出大亚湾中微子实验二期实验(现更

粒子探测器大家族

粒子探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。当粒子和探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。按照记录方式,粒子探测器大体上分为计数器和径迹室两大类。 计数器类:

柴油气体探测器简介

   柴油气体探测器,通过进口传感器,感应柴油气体浓度,将检测浓度值转送到气体报警控制器,进行浓度的显示、及超出设置报警点后的声光报警提醒,以提醒用户采取安全措施,并驱动排风、切断、喷淋系统,防止发生爆炸、火灾、中毒事故,从而保障安全生产。产品广泛应用于燃气、石油、化工、冶金等存在易燃、易爆、毒性气

硅化铂探测器简介

  硅化铂探测器是指利用铂硅肖特基势垒和内光电效应将入射的红外辐射转变成电信号的器件。又称硅化铂肖特基势垒探测器。  简介  硅化铂探测器是指利用铂硅肖特基势垒和内光电效应将入射的红外辐射转变成电信号的器件。又称硅化铂肖特基势垒探测器。  用途  主要用于中、短波红外辐射的探测。  构造  它的构造

气体X射线探测器简介

  气体探测器均以气体作为探测介质,内部多充有以多种惰性气体为主混合气体,并在探测器两极加上电压小室。其小室的形状大小结构因气体探测器的不同会有加大差别。在探测器使用时我们多将内部气体大气压加至2到3个大气压,这样可以有效提高气体探测器的探测效率。气体探测器的工作原理是通过收集电离电荷获取核辐射信息

X射线荧光光谱仪探测器简介

  X射线荧光光谱仪常用的探测器有流气正比计数器和闪烁计数器,流气正比计数器用于轻元素检测,闪烁计数器用于重元素检测。  流气正比计数器由金属圆筒(阴极)、金属丝(阳极)、窗口及探测气体(惰性气体)构成。阳极都制成均匀光滑的细丝线,一般由钨、钼、铂、金等稳定的金属丝制成。  流气正比计数器中一般选用

免疫计数器临床应用注意事项

由于电源和仪器的放大倍数会产生漂移,从而使闪烁计数器的工作点产生漂移,因此,闪烁计数器应工作在坪区,使计数比较稳定。闪烁计数器的坪长,除与闪烁体有关外,还与光电倍增管的总灵敏度、噪声、高压不稳定和仪器的放大倍数等因数有关。所以测量时必须合理选择这些参数,使计数器有较长的工作频段,计数效率比较稳定。而

简介测氡检测仪的闪烁室测氡法

  这种方法涉及的仪器是FD218电子测氡仪,含氡气体被吸入闪烁室后,氡及其他体衰变产生α射线使闪烁室壁的ZnS发光,经光电倍增管放大后记录,利用浓度与单位时间脉冲数的正比关系换算氡浓度。本方法的优点是测量下限低,准确性高,操作简单,缺点是测量的时间较长,一般检测时间超过3小时,设备移动笨重,参与检

一文轻松了解工业ct系统

 工业ct系统是指应用于工业中的核成像技术,它能在对检测物体无损伤条件下,以二维断层图像或三维立体图像的形式,准确、清晰、直观地展示被检测物体的内部组成、结构、材质及缺损状况。  工业ct系统是在射线检测的基础上发展起来的,其基本原理是:让一束X射线投射在物体上,通过物体对X射线的吸收便可获得物体内

江门中微子实验将运行30年-中间会升级改造

原文地址:http://news.sciencenet.cn/htmlnews/2022/3/474897.shtm 科技日报记者 陆成宽  大亚湾中微子实验的句号,并不是我国中微子研究的终点。新的“接棒者”——江门中微子实验已经进入建设关键阶段。 “江门中微子实验目前已经完成了绝大部分

硅微条探测器的结构简介

  从探测器横截面上看,主要分这样几个部分:  探测器表面:有薄铝条, SiO2隔离条,铝条下边是重掺p+条。  中间部分:是厚度大约为300μm 的高阻n 型硅基,作为探测器的灵敏区。  底部:是n 型硅掺入砷(As) 形成重掺杂n+ 层和铝薄膜组成的探测器的背衬电极。  微条(strips)是探

光电倍增管的特性

  当光照射到光阴极时,光阴极向真空中激发出 光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的 辐射能量的 光电探测器中,具有极高的灵敏度和极低的噪声。另

光电倍增管的应用

  由于光电倍增管增益高和响应时间短,又由于它的输出电流和入射光子数成正比,所以它被广泛使用在 天体光度测量和 天体分光光度测量中。其优点是:测量精度高,可以测量比较暗弱的天体,还可以测量天体光度的快速变化。天文测光中,应用较多的是锑铯光阴极的倍增管,如RCA1P21。这种光电倍增管的极大量子效率在

光电倍增管的过程

当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍

光电倍增管的过程

当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍

简介测氡检测仪闪烁室测氡法

  这种方法涉及的仪器是FD218电子测氡仪,含氡气体被吸入闪烁室后,氡及其他体衰变产生α射线使闪烁室壁的ZnS发光,经光电倍增管放大后记录,利用浓度与单位时间脉冲数的正比关系换算氡浓度。本方法的优点是测量下限低,准确性高,操作简单,缺点是测量的时间较长,一般检测时间超过3小时,设备移动笨重,参与检

闪烁陶瓷介绍

闪烁材料是一种能将入射在其上的高能射线(X/γ射线)或粒子转换为紫外或可见光的晶态能量转换体,广泛应用在高能物理与核物理实验、影像核医学(Computed Tomography ,简称 CT和Positron Emission Tomography ,简称 PET )、工业CT在线检测、油井勘探、安

中科院江门中微子实验探测器现场安装已全面展开

中新网北京1月27日电 (记者 孙自法)记者27日从中国科学院高能物理研究所(中科院高能所)获悉,由该所承担建设和运行管理的大科学装置——江门中微子实验的探测器现场安装工作近日已全面展开。中科院高能所表示,因中微子研究的科学意义重大,国际竞争激烈,为争取早日完成探测器安装,江门中微子实验建设项目春节