紫外可见吸收光谱的产生原因

紫外-可见吸收光谱的产生及基本原理2.1物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态:M(基态)+hv------M*(激发态)这就是对光的吸收作用。由于物质的能量是不连续的,即能量上一量子化的。只有当入射光的能量(hv)与物质分子的激发态和基态的能量差相等时才能发生吸收△E=E2-E1=hv=hc/λ而不同的物质分子因其结构的不同而具有不同的量子化能级,即△E不同,故对光的吸收也不同。名词:吸收光谱曲线(光吸收曲线)PPP7:它反映了物质对不同波长光的吸收情况。PPP7图2-1表示不同浓度的高锰酸钾溶液的吸收光谱。紫外-可见吸收光谱定性分析的依据:光吸收程度最大处的波长叫做最大吸收波长,用λmax表示,同一种吸光物......阅读全文

紫外可见光区的波长范围

紫外可见光区的波长范围介绍如下:紫外可见分光光度法合适的检测波长范围是200~800nm。紫外可见光分光光度计工作原理与红外光谱、拉曼光谱的工作原理近似,采用一定频率的紫外可见光照射所需检测的物质,引起物质中电子跃迁,从而表现出随着吸收波长变化而引起的光谱变化,记录光谱变化形成分析数据。紫外可见光分

紫外可见漫反射光谱是什么

随光谱技术的迅速发展,光学测量在表面表征中已占有非常重要的位置。由测量染料、颜料而发展起来的漫反射紫外可见光谱(DRUVS)是检测非单晶材料的一种有效方法。在催化剂结构研究中,DRUVS已用于研究过渡金属离子及其化合物结构、活性组分与载体间的相互作用。本文就二氧化碳加氢甲烷化催化刑(分别担载Fe、C

紫外可见光谱产生的原因

分析化学中(紫外-可见分光光度法),B带从benzenoid(苯的)得名。是芳香族(包括杂芳香族)化合物的特征吸收带。苯蒸汽在230~270nm处出现精细结构的吸收光谱,又称苯的多重吸收带。因在蒸汽状态中,分子间彼此作用小,反映出孤立分子振动、转动能级跃迁,在苯溶液中,因分子间作用加大,转动消失仅出

紫外可见漫反射光谱是什么

随光谱技术的迅速发展,光学测量在表面表征中已占有非常重要的位置。由测量染料、颜料而发展起来的漫反射紫外可见光谱(DRUVS)是检测非单晶材料的一种有效方法。在催化剂结构研究中,DRUVS已用于研究过渡金属离子及其化合物结构、活性组分与载体间的相互作用。本文就二氧化碳加氢甲烷化催化刑(分别担载Fe、C

紫外可见吸收光度计工作原理

一、紫外可见吸收光谱的产生紫外可见吸收光度计是基于紫外可见吸收光谱而进行分析的,因此,有必要首先了解紫外可见吸收光谱的产生。紫外可见吸收光谱是由分子的外层价电子跃迁产生的,属分子吸收光谱,也称电子光谱。它与原子光谱的窄吸收带不同。由于每种电子能级的跃迁会伴随若干振动和转动能级的跃迁,使分子光谱呈现比

紫外可见吸收光谱的产生原因

紫外-可见吸收光谱的产生及基本原理2.1物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态

紫外可见甲苯正己烷溶液标准品

甲苯正己烷溶液标准品 描述 简单检查您分光光度计的分辨率和带宽就可以保证您的分析可以获得最佳结果。0.02 % 甲苯正己烷溶液标准品是药典首选的用以验证分光光度计分辨率的方法。被热封到石英比色皿中,NIST™ 可溯源通过计算甲苯在 269 nm

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外可见吸收光谱的形成原理

原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种

紫外可见吸收光谱的产生原因

紫外-可见吸收光谱的产生及基本原理2.1 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发

紫外—可见—红外光谱分区表

紫外—可见—红外光谱分区表 几种波长单位的关系为:1μm = 1 micron = 10-4 cm-1 = 10000Å1 nm = 10-7 cm =10-3μm1 Å =  10-8 cm =10-9m名称波长(μm)波长(nm)波数(cm-1)远红外(转动区)25~100025000~1000

紫外可见光谱怎么看

  紫外-可见吸收光谱(Ultraviolet Visible Absorption Spectroscopy),简称紫外光谱(属分子光谱),是物质的分子吸收紫外光-可见光区的电磁波时,电子发生跃迁所产生的吸收光谱。通常我们所说的紫外光谱其波长范围主要是为200~800nm(其中10~200nm为真

紫外可见与可见光分光光度计的区别

紫外可见分光光度计与可见分光光度计的区别是测定波长范围不同,紫外一般用氢灯,测定波长范围180~350nm,可见一般用钨灯,测定波长范围320~1000nm。所谓紫外可见分光光度计也就是说这个仪器可以更换光源,能够测定吸收峰在紫外和可见光部分的化合物。发现吸光度超过2,便不再显示,是正常现象。吸光度

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

Vis7220N紫外可见技术指标

主要技术指标•波长范围:320〜1100nm•光源:进口插座式钨灯•电源:AC 220V/50Hz  110V/60HZ•功率:100W•仪器尺寸:530mmx410mmx210mm•主机重量:15kg

紫外可见分光光度计

紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理部门,紫外可见分光光度计都有广泛而重要的应用。分光光度计是杜包斯克(Duboscq)和奈斯勒(Nessler)等人在1854年将朗伯-比尔(La

紫外可见吸收光谱蓝移有什么好处

Blue shift or hypsochromic shift (蓝移) 机化合物向结构发变化使其吸收带吸收峰波向短波移现象称「蓝移」蓝移现象亦源于取代基或溶剂影响 Red shift or bathochromic shift (红移) 机化合物结构发变化使其吸收带吸收峰波向波向移现象称「红移」

波谱分析之紫外可见光谱

  四谱  四谱是现代波谱分析中最主要也是最重要的四种基本分析方法。四谱的发展直接决定了现代波谱的发展。在经历了漫长的发展之后四谱的发展以及应用已渐成熟,也使波谱分析在化学分析中有了举足轻重的地位。   紫外-可见光谱  20世纪30年代,光电效应应用于光强度的控制产生第一台分光光度计并由于单色器材

近紫外可见光吸收谱特征

将蓝宝石磨制成光薄片,在西德莱茨MPV-3显微光度计上可测得350~750nm范围内透过率值。为了便于与国内外发表的各种蓝宝石吸收光谱进行对比,根据公式:吸收率≈1—透过率,可将透过率换算成吸收率。文中所有实测图谱都是经过校正并换算得出,横坐标为波长(nm),纵坐标为吸收率。有的作者将横坐标用频率(

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.

紫外可见吸收光谱法的特点

1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。3、紫外

紫外可见吸收光谱产品原理及应用

紫外可见吸收光谱产品原理 分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收

紫外可见光谱定性鉴别方法

紫外-可见分光光度法主要适用于不饱和共轭体系化合物的鉴定。定性鉴别对仪器要求高,要常校正,样品纯度可靠。利用紫外光谱对有机化合物进行定性鉴别的主要依据是多数有机化合物具有特征吸收光谱,如吸收光谱的形状、吸收峰的数目、各吸收峰的波长位置和相应的吸收系数等。定性分析方法常用比较法,结构完全相同的化合物应

紫外可见分光光度计

紫外可见分光光度计  作用:化学指标测定 波长要求:190~1100nm          品牌:上海光谱 推荐型号:SP-756P

紫外可见吸收光谱法的应用

利用紫外光谱可以推导有机化合物的分子骨架中是否含有共轭结构体系,如C=C-C=C、C=C-C=O、苯环等。利用紫外光谱鉴定有机化合物远不如利用红外光谱有效,因为很多化合物在紫外没有吸收或者只有微弱的吸收,并且紫外光谱一般比较简单,特征性不强。利用紫外光谱可以用来检验一些具有大的共轭体系或发色官能团的

紫外红外可见光波长范围

  可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围。  一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。  可见光通常指波长范围为:390nm  -780nm 的电磁波。  红外波长范围是770~622nm,