近紫外可见光吸收谱特征
将蓝宝石磨制成光薄片,在西德莱茨MPV-3显微光度计上可测得350~750nm范围内透过率值。为了便于与国内外发表的各种蓝宝石吸收光谱进行对比,根据公式:吸收率≈1—透过率,可将透过率换算成吸收率。文中所有实测图谱都是经过校正并换算得出,横坐标为波长(nm),纵坐标为吸收率。有的作者将横坐标用频率(cm-1),纵坐标用光密度(D)或线吸收系数(α)表示,D=lgI0/I,I0为入射光强,I为透射光强,α=1nI0/I·1/h,h为晶体厚度。由于制样困难,样品厚度难以精确控制,而样品各吸收峰的相对强弱与样品厚度及纵坐标的单位无关,因此文中未根据Buger-Lambert-Beer定律进行厚度修正。为了便于与各学者的资料对比,文中使用了nm和cm-1两种单位,1cm-1=10-7nm。用nm做横坐标单位时,谱线形状会较为展宽。所选样品较为均匀,透明度较好,无明显包裹体。未特别标明,实测样品厚度约0.1mm。图3-1列出了部分样品的实......阅读全文
近紫外可见光吸收谱特征
将蓝宝石磨制成光薄片,在西德莱茨MPV-3显微光度计上可测得350~750nm范围内透过率值。为了便于与国内外发表的各种蓝宝石吸收光谱进行对比,根据公式:吸收率≈1—透过率,可将透过率换算成吸收率。文中所有实测图谱都是经过校正并换算得出,横坐标为波长(nm),纵坐标为吸收率。有的作者将横坐标用频率(
紫外/可见/近红外探测器
紫外/可见/近红外探测器成立于1953年的日本滨松光子学株式会社(以下简称滨松集团),是世界上科技水平最高、市场占有率最大的光科学、光产业公司。使用滨松集团11200支 20英寸光电倍增管的东京大学小柴昌俊教授的中微子实验获得2002年的诺贝尔物理学奖。滨松集团的产品被广泛的应用在医疗生物、
紫外可见吸收光谱的特征
1. 吸收峰的形状及所在位置——定性、定结构的依据2. 吸收峰的强度——定量的依据A = lg(1/T)=κCLT:透射率k:摩尔吸收系数,单位:L·cm⁻¹·mol⁻¹C:浓度L:光程长紫外可见光谱的两个重要特征波峰:λmax, κ例:λmaxEt = 279 nm (κ=5012,logk=3.
光吸收酶标仪可进行可见光与紫外光吸光度的检测
酶标仪即酶联免疫检测仪。是酶联免疫吸附试验的专用仪器,又称微孔板检测器。酶联免疫反应通过偶联在抗原或抗体上的酶催化显色底物进行的,反应结果以颜色显示,通过显色的深浅即吸光度值的大小就可以判断标本中待测抗体或抗原的浓度。光吸收酶标仪广泛地应用在临床检验、生物学研究、农业科学、食品和环境科学中。在本篇干
紫外可见近红外光谱仪仪器特点
紫外可见近红外光谱仪是包括紫外-可见-近红外波段连续扫描的双光束分光光度计,可适用的领域有:建筑玻璃节能检测、建筑工程质量检测、汽车玻璃检测、材料科学研究、高等院校科研等。可检测的样品有:普通平板玻璃、电浮法玻璃、夹层玻璃、离子镀膜玻璃、溅射镀膜玻璃、LOW-E玻璃、汽车安全膜等。仪器特点:采用双光
分子紫外可见光吸收光谱进行仪器分析时的注意事项
运用紫外可见分光光度计进行样品分析时,主要注意事项有以下几点:1、仪器预热:测试前应对仪器进行通电预热30分钟左右,并进行仪器自校,一切正常后方可进行测试;2、比色皿的选择:比色皿有石英和玻璃两种材质,在紫外光区(200-400nm)必须使用石英比色皿,可见光区(400-760nm)石英和玻璃比色皿
紫外可见近红外光谱仪怎样制样
红外漫反射技术测定精氨酸阿司匹林的含量 原理:近红外定量分析需要一个待测成分已知的标准样品集(简称标样集),根据标样集中样品的近红外光谱运用化学计量学方法建立光谱特征值(如吸光度)与待测成分之间的数学关系(简称数学模型)。当测定未知样品时,只需测定该样品的近红外光谱,然后用已建好的数学模型预测出待测
紫外可见近红外分光光度计
型号:Lambda 750 S型 生产厂家:美国 PerkinElmer (美国珀金埃尔默仪器有限公司) 附件:60 mm积分球;6度角相对镜反射附件;8池架联动液体池。 主要技术指标: 1 带宽(分辨率):0.17 nm–5.00 nm以 0.01 nm的间隔连续可调。
精品推荐:紫外、可见近红外分光光度计
紫外、可见近红外分光光度计可在UV/Vis段转换和NIR段分别进行8段和10段谱宽转换,广泛应用于生命科学 、食品科学、环境科学、材料科学、化学 、药物学、地质学、光学等学科。 仪器参数: 仪器型号:UV-3150 测试波长范围:190nm〜3200nm;
紫外可见分光光度计的特征、原理及应用
1、概述人们在实践中早已总结出不同颜色的物质具有不同的物理和化学性质。根据物质的这些特性可对它进行有效的分析和判别。由于颜色本就惹人注意,根据物质的颜色深浅程度来对物质的含量进行估计,可追溯到古代及中世纪。1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在
为什么有些物质在紫外可见区有两个特征吸收峰
紫外可见吸收光谱吸收峰是由于价电子的跃迁而产生的。紫外吸收光谱和可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。在有机化合物分子中有形成单键的σ电子、有形成双键的π电
紫外可见分光光度计的特征、原理及应用
1.概述 人们在实践中早已总结出不同颜色的物质具有不同的物理和化学性质。 根据物质的这些特性可对它进行有效的分析和判别。由于颜色本就惹人注意,根据物质的颜色深浅程度来对物质的含量进行估计,可追溯到古代及中世纪。1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambe
紫外可见与近红外光谱仪应用上有什么区别
红外漫反射技术测定精氨酸阿司匹林的含量 原理:近红外定量分析需要一个待测成分已知的标准样品集(简称标样集),根据标样集中样品的近红外光谱运用化学计量学方法建立光谱特征值(如吸光度)与待测成分之间的数学关系(简称数学模型)。当测定未知样品时,只需测定该样品的近红外光谱,然后用已建好的数学模型预测出待测
紫外可见与近红外光谱仪应用上有什么区别
近红外漫反射技术测定精氨酸阿司匹林的含量 原理:近红外定量分析需要一个待测成分已知的标准样品集(简称标样集),根据标样集中样品的近红外光谱运用化学计量学方法建立光谱特征值(如吸光度)与待测成分之间的数学关系(简称数学模型)。当测定未知样品时,只需测定该样品的近红外光谱,然后用已建好的数学模型预测出待
揭示离子吸附型稀土矿床的可见光近红外光谱特征
近日,中国科学院广州地球化学研究所研究员何宏平、博士谭伟与香港大学等合作,通过对含稀土的黏土矿物和典型离子吸附型稀土矿床剖面可见光-近红外光谱特征的系统研究,确定了能够有效指示离子吸附型稀土矿床矿体风化程度、稀土含量以及原岩性质的光谱参数,为快速探查离子吸附型稀土矿床新方法的构建提供了理论基础。
紫外可见Hg灯配件
描述 汞灯是 USP、PH.EUR、JP、TGA、WHO、ASTM (E275-67) 及其他国际认可的测试协议推荐用于测试波长精度的一级标准物。汞基本发射线是汞的一种物理性质,因此无需追溯。由于汞发射线很窄,所以仪器精度通过了最高可用容限
紫外可见近红外分光光度计对薄膜进行光学表征
精确测定薄膜和多层镀膜的光学参数(使用光学镀膜的逆向工程)对于生产高质量的产品至关重要。这些数据可以给设计和生产环节提供反馈。对每一层依次进行评估后得到的逆向工程结果可以用来调整沉积参数,重校监测系统,改善对各层的厚度控制。通常是使用紫外-可见-近红外 (UV-Vis-NIR) 或傅里叶变换红外 (
紫外可见吸收光谱的紫外光谱
各种因素对吸收谱带的影响表现为谱带位移、谱带强度的变化、谱带精细结构的出现或消失等。谱带位移包括蓝移(或紫移,hypsochromic shift or blue shift))和红移(bathochromic shift or red shift)。蓝移(或紫移)指吸收峰向短波长移动,红移指吸收峰
紫外可见漫反射光谱数据怎么转化为紫外可见吸收光谱
如果你的样品,没有透射的话,那么直接用 1-R 去计算吸收就可以了
近紫外区的波长
紫外光波段380-1 nm,包括近紫外、远紫外和极紫外(真空紫外)。 一般波长
FastTrack™-紫外可见光技术
采用氙气闪光灯的阵列式分光光度计可在几秒内就能提供全波长范围的光谱扫描,无需预热,预开即用。 FastTrack 技术可显著加快紫外可见分光光度计测量速度:具备出色光学性能的独特设计一秒钟内完成全谱扫描先进的耐久性氙灯用于稳定、可重复、可持续的测量坚固的设计和紧凑的布局无需移动部件始终准备好测量,无
紫外可见溶液验证标准品
描述 根据国际药典指南,氧化钬高氯酸溶液是用于光分光光度计波长准确性验证的首选标准品。永久密封在石英比色皿中,使其可以用于深紫外范围在 219 到 650nm 范围呈现锐化、稳定的峰形-可以轻松的将波长与峰最大值进行关联将每个峰的所观察到的读数与标准品附带证书上的预期值做对比来进行
紫外可见吸收光谱原理
紫外可见吸收光谱原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π
紫外可见吸收光谱原理
紫外可见吸收光谱原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π
紫外可见吸收光谱原理
1. 紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱
紫外可见分光光度计的日常维护、特征、原理及应用
紫外可见分光光度计的日常维护 世界上第一台紫外可见分光光度计,于1940年由美国的Beckman公司研制成功,于1945年正式推出商品仪器。当时的仪器很简单,自动化程度很低,但随着科学技术的发展,它的发展非常快。目前,已是世界上使用最多、覆盖面最广的一种分析仪器,已在生命科学、材料科学、环境科学、农
日立高新推出UH5700-紫外/可见/近红外分光光度计
日立高新技术公司(TSE:8036,日立高新技术)正式推出可测定紫外到近红外区的台式紫外/可见/近红外分光光度计“UH5700”。 此次发售的UH5700可测定波长范围从紫外波长区到近红外波长区(190nm~3300nm),覆盖了分光光度计的最大可检测波长范围。它可以测定固体、液体等样品,用于紫
BCEIA-2015-日立UH4150紫外可见近红外分光光度计
分析测试百科网讯 2015年10月27日,国内分析测试行业影响力最大的展会2015 BCEIA(bceia2015)在北京国家会议中心举办。作为业内规模和质量最高的盛会之一,本届展览会共有461家厂商参展,展出当今国内外分析测试领域的前沿技术和先进仪器设备。其中参展的分子光谱仪器众多,分析测试百
分子光谱技术应用现状
分子光谱分析仪使用情况调查饼图 分子光谱仪和液相色谱仪、气相色谱仪均为分析和生命科学实验室的常用分析工具。紫外-可见和红外这类分子光谱技术通常作为检测器集成在液相色谱和气相色谱仪器上;在许多质量控制和研发实验室中,分析者也会单独(或离线)地 使用分子光谱设备作为补充工具。 分子光谱测
可见分光、紫外分光和紫外可见分光光度计的区别
可见分光光度计和紫外分光光度计的区别是测定波长范围不同,一般可见光波长范围是400~1000nm,紫外光波长范围是200~400nm。所谓紫外可见分光光度计也就是说这个仪器可以通过更换光源形成紫外和可见的光区,能够测定吸收峰在紫外和可见光部分的化合物。一般测定波长在200~1000nm。