红外吸收光谱法和紫外可见分子吸收光谱法的区别
1、吸收的波长不一样。红外吸收光谱法中,样品吸收的是红外波段的电磁辐射;紫外可见光谱法中,样品吸收的是紫外-可见波段的电磁辐射。2、仪器原理有区别。红外光谱法应用的是傅立叶变换红外光谱,红外光经过迈克尔逊干涉仪发生干涉后照射样品,采集到样品的干涉图再经过傅立叶变换得到样品的光谱; 而紫外-可见吸收光谱是用双光路分别检测样品和参比的透过光强,然后做差得到的样品光谱。3、光谱反映的意义不同。红外吸收光谱能给出样品分子的振-转结构信息,可以用于鉴定分子结构; 紫外-可见光谱给出的是分子的电子态跃迁信息,用于确定分子的激发性质。......阅读全文
红外吸收光谱法和紫外可见分子吸收光谱法的区别
1、吸收的波长不一样。红外吸收光谱法中,样品吸收的是红外波段的电磁辐射;紫外可见光谱法中,样品吸收的是紫外-可见波段的电磁辐射。2、仪器原理有区别。红外光谱法应用的是傅立叶变换红外光谱,红外光经过迈克尔逊干涉仪发生干涉后照射样品,采集到样品的干涉图再经过傅立叶变换得到样品的光谱; 而紫外-可见吸收光
红外吸收光谱法和紫外可见分子吸收光谱法的区别
1、吸收的波长不一样。红外吸收光谱法中,样品吸收的是红外波段的电磁辐射;紫外可见光谱法中,样品吸收的是紫外-可见波段的电磁辐射。2、仪器原理有区别。红外光谱法应用的是傅立叶变换红外光谱,红外光经过迈克尔逊干涉仪发生干涉后照射样品,采集到样品的干涉图再经过傅立叶变换得到样品的光谱; 而紫外-可见吸收光
红外吸收光谱法和紫外可见光谱法有什么不同地点
紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如ne、he、o2、h2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚
紫外可见吸收光谱法
分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构
紫外可见吸收光谱法的特点
1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。3、紫外
紫外可见吸收光谱法的应用
利用紫外光谱可以推导有机化合物的分子骨架中是否含有共轭结构体系,如C=C-C=C、C=C-C=O、苯环等。利用紫外光谱鉴定有机化合物远不如利用红外光谱有效,因为很多化合物在紫外没有吸收或者只有微弱的吸收,并且紫外光谱一般比较简单,特征性不强。利用紫外光谱可以用来检验一些具有大的共轭体系或发色官能团的
紫外可见吸收光谱法的特点
1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。3、紫外
紫外可见吸收光谱法的仪器组成
紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大
紫外可见吸收光谱法的仪器组成
紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大
紫外可见吸收光谱法的工作原理
紫外-可见吸收光谱的产生及基本原理2.1 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发
紫外可见吸收光谱法的仪器组成
紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大
紫外可见吸收光谱法的仪器组成
紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大
紫外可见吸收光谱法的仪器组成
紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大
红外吸收光谱法的概念
红外吸收光谱法 简称红外光谱法。当一定频率(能量)的红外光照射分子时,如果分子中某个基团的振动频率和外界红外辐射频率一致时,光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。将分子吸收红外光的情况用仪器记录就得到该试样的红外吸收光谱图,利用光谱图巾吸收峰的波长、
红外吸收光谱法鉴别布洛芬
1.供试品处理取供试品5片,研细,加丙酮20ml使溶解,滤过,取滤液挥干,真空干燥。2.溴化钾压片称取1mg布洛芬供试品,置于玛瑙研钵中,加入干燥的光谱纯溴化钾或氯化钾约200mg,充分研磨均匀,使其粒度在2.5μm(通过250目筛孔)以下。取少量上述混合样品装入压片机的模具内,尽量使样品在模具内铺
红外吸收光谱与紫外可见吸收光谱的区别
一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的
红外吸收光谱与紫外可见吸收光谱的区别
紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚
红外吸收光谱与紫外可见吸收光谱的区别
一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的
红外吸收光谱与紫外可见吸收光谱的区别
一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的
紫外可见吸收光谱法的基本原理
紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有:(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量
紫外可见吸收光谱法的基本原理
紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有:(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量
紫外可见吸收光谱法的基本原理
紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有:(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量
紫外可见分子吸收光度法原理
紫外—可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。
红外吸收光谱法结构分析初步
红外吸收光谱法结构分析初步一、 实验目的1、 掌握一般固体试样的制样方法以及压片机的使用方法。2、 了解红外光谱仪的工作原理。3、 掌握红外光谱仪的一般操作。二、 实验原理红外吸收光谱是由于分子中振动能级的跃迁而产生的。由于不同物质或同一物质的不同聚集态中各基团固有的振动频率不同或结构的不同,导致所
原子吸收光谱与紫外可见吸收光谱之间的区别
1、紫外-可见吸收光谱除了分子外层电子能级跃迁外,还有分子的振动和转动能级的跃迁,是一种宽带吸收(10-1—10-2nm) 2、原子吸收光谱是由于原子外层电子能级的跃迁,是一种窄带吸收(10-3nm) 原子化火焰的温度:两千度到三千度左右(温度过高会使原子最外层的电子吸收能量跃迁至激发态,这
紫外可见分光光度计和紫外吸收光谱仪的区别
每个药品都有自己特定的波长处会有最大吸收,紫外检测器搭配液相色谱分析仪共同测定药品的含量或者其作他分析用的,准确度较高。紫外分光光度计比较常用的就是检测紫外波长的最大最小吸收度,做鉴别用,还有就是在这个药品特定的最大吸收波长处测定吸光度,然后分析其含量或者溶出度。
第十章-光谱分析概论思考题
一、学习要求 学习要求 掌握:光学分析法的分类和基本原理;波数、波长、频率和光子能量间的换算;光谱分析仪器的基本构造 熟悉:电磁波谱的分区,电磁辐射与物质相互作用的相关术语;各种光学仪器的主要部件 了解:光谱分析法的发展概况 二、单选题 1.频率可用下列哪种方式表示( ) A、σ/
火焰原子吸收光谱法和红外光谱、紫外光谱的区别?
原子吸收是通过原子吸收光谱来检测是否含有某种元素及该元素的含量,比如可以检测样品中某一重金属含量,并不能得到分子结构的信息,而且在原子吸收光谱的检测条件下,分子结构一般都被破坏了。红外光谱是利用分子的红外吸收光谱来获取分子结构的某些信息的方法,主要可以获悉分子中是否存在某些官能团。紫外可见光谱是利用
使用红外吸收光谱法鉴别阿莫西林
(一)检验药品(1)检验药品的名称:阿莫西林原料药。(2)检验药品的来源:市场购买或送检样品。(3)检验药品的规格、批号、包装及数量:根据药品包装确定,并记录有关情况,检验合格后方可使用。(二)质量标准(1)检验依据:《中国药典》(2010版)二部401页“阿莫西林”:本品为(2S,5R,6R)-3
红外吸收光谱法——谱图解析实例(一)
应广大亲们的要求,小编又连夜精心整整理了红外吸收光谱图解析实例,希望对你在红外吸收光谱的解析上有所帮助。 利用红外吸收光谱进行有机化合物定性分析可分为两个方面:一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;二是结构分析,即利用红外吸收光谱