荧光光谱仪原理
荧光光谱仪由激发光源、单色器、狭缝、样品室、信号检测放大系统和信号读出、记录系统组成。激发光源提供用于激发样品的入射光的来源。单色器用来分离出所需要的单色光。信号检测放大系统用来把荧光信号转化为电信号,结合放大系统上的读出装置可显示或记录荧光信号。一.激发光源因为物质的荧光强度与激发光的强度成正比,因此一种理想的激发光源必须具备稳定的光强、足够的强度和在所需光谱范围内有连续的光谱,此外激发光源的输出还应是连续平滑等强度的辐射。当然,这是理想化的光源,符合这些要求的光源实际上并不存在。通常仪器的激发光源主要采用氙灯、汞灯、氙-汞弧灯、激光器以及闪光灯。高压氙弧灯是应用最广泛的一种光源。荧光光谱仪所用的激发光源为450W氙灯,这是一种短弧气体放电灯。该灯外套为石英,里面充氙气,室温时其压力为5atm,工作时压力约为20atm,氙灯的激发光谱在250~800nm呈连续光谱,在450nm附近有几条锐线。工作时,灯内相距约8mm的钨丝间会......阅读全文
荧光光谱仪及其原理
什么是XRF? 一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激励被测样品。样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量
荧光光谱仪的简介
荧光光谱仪又称荧光分光光度计,是一种定性、定量分析的仪器。通过荧光光谱仪的检测,可以获得物质的激发光谱、发射光谱、量子产率、荧光强度、荧光寿命、斯托克斯位移、荧光偏振与去偏振特性,以及荧光的淬灭方面的信息。 结构 由光源、激发光源、发射光源、试样池、检测器、显示装置等组成。 分类 荧光光
原子荧光光谱仪
原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。 利用原子荧光谱线的波长
X-射线荧光光谱仪
用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图
荧光光谱仪器的校正
灵敏度校正 荧光光度计的灵敏度可以用被检测出的最低信号来表示,通常以硫酸奎宁的检出限或者以纯水的的拉曼峰的信噪比(S/N)表示。 荧光光度计的灵敏度与光源强度,单色器(包括透镜,反射镜)的性能,放大系统的特征,和光电倍增管的灵敏度有关; 与所选用的波长,狭缝宽度有关。 与被测空白溶剂的拉曼散射,激
原子荧光光谱仪
原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。
原子荧光光谱仪原子荧光分类(二)
非共振原子荧光 当激发原子的辐射波长与受激原子发射的荧光波长不相同时,产生非共振原子荧光。非共振原子荧光包括直跃线荧光、阶跃线荧光与反斯托克斯荧光, 直跃线荧光是激发态原子直接跃迁到高于基态的亚稳态时所发射的荧光,如Pb405.78nm。只有基态是多重态时,才能产生直跃线荧光。阶跃线荧光是激
原子荧光光谱仪原子荧光分类(三)
敏化原子荧光 激发原子通过碰撞将其激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射荧光,此种荧光称为敏化原子荧光。火焰原子化器中的原子浓度很低,主要以非辐射方式去活化,因此观察不到敏化原子荧光。
原子荧光光谱仪原子荧光分类(一)
当自由原子吸收了特征波长的辐射之后被激发到较高能态,接着又以辐射形式去活化,就可以观察到原子荧光。原子荧光可分为三类:共振原子荧光、非共振原子荧光与敏化原子荧光。 共振原子荧光 原子吸收辐射受激后再发射相同波长的辐射,产生共振原子荧光。若原子经热激发处于亚稳态,再吸收辐射进一步激发,然后再发
原子荧光光谱仪-原子荧光光谱仪的光源种类、工作原理
激发光源是原子荧光光谱仪的主要组成部分。在一定条件下荧光强度与激发光源的发射强度成正比,因此一个理想的光源应当具有下列条件:①发射强度高,无自吸②稳定性好,噪声小③发射的谱线窄且纯度高:④价格便宜且有足够长的使用寿命,⑤操作简便,不需复杂的电源,③适用于各种元素分析,即能制造出各种元素的同类型的灯。
直读光谱仪和荧光光谱仪有什么区别?
直读光谱仪要求试样具有导电性,且只能是固体样品,简单地说就是火花直读只能分析金属固体样品中的元素。而x射线荧光光谱仪由计算机控制,自动化水平高,分析速度快,它对样品要求不高,可以分析粉末样品、固体样品、熔融样品、液体样品,不需要样品具有导电性,金属及非金属样品均可分析。 直读一般分析低含量的元
荧光光谱仪的工作原理
由光源氙弧灯发出的光通过切光器使其变成断续之光以及激发光单色器变成单色光后,此光即为荧光物质的激发光,被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光后照射于测样品用的光电倍增管上,由其所发生的光电流经过放大器放大输至记录仪,激发光单色器和荧光单色器的光栅均由电动机带动的凸轮所控制,
能量色散荧光光谱仪
能量色散荧光光谱仪是一种用于物理学、化学、能源科学技术领域的分析仪器,于2010年4月1日启用。 技术指标 1 X射线发生器: 管靶-Rh标配;电压范围4-50 kV;滤光片:七个滤光片+直接激发;2 基本性能:稳定性RSC0.3%,8h;灵敏度 Fe,Pb, 3pmm; 3 样品室:30c
荧光光谱仪的相关介绍
荧光光谱仪又称荧光分光光度计,是一种检测物质的定性、定量分析仪器。 其原理是根据荧光效应:激光照射原子,原子中电子吸收能量跃迁到第一激发单线态或第二激发单线态, 但这些激发态是不稳定的,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放 ,产生荧光,一般持续发光时间短于10^-8秒(同时产
波长色散荧光光谱仪简介
此种仪器的灵敏度比能量色散的高一个数量级,也就是说,所测的数据并不存在“灰色地域”,不存在测定后还需拿到检测机构复检。但仪器的价格比能量色散的贵很多,特别是进口的都在百万元以上,所以没有外国公司建议用。仪器操作和能量色散一样,不需要专业人员。 波长型最大优点是用在原材料厂上,其测定的数据准确,给
X荧光光谱仪的保养
X荧光光谱仪工作的外部环境 1、周围强磁场干扰 设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。 2、环境温度,湿度的影响 应保持室温20~25℃为宜,气温过高或过低都会影响设备的正常运作,所以配有
简述分子荧光光谱仪劣势
在经典分析中,影响谱线强度的因素较多,尤其是试样组份带来的光谱重叠等,所以对标准参比的组份要求较高。 难于作绝对定量分析,需要精确的标样做比较。含量(浓度)较大时,准确度较差。 对样品化合物有共轭性要求,应用不广泛.
X射线荧光光谱仪简介
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水
荧光光谱仪的工作原理
由光源氙弧灯发出的光通过切光器使其变成断续之光以及激发光单色器变成单色光后,此光即为荧光物质的激发光,被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光后照射于测样品用的光电倍增管上,由其所发生的光电流经过放大器放大输至记录仪,激发光单色器和荧光单色器的光栅均由电动机带动的凸轮所控制,
荧光光谱仪的工作原理
由光源氙弧灯发出的光通过切光器使其变成断续之光以及激发光单色器变成单色光后,此光即为荧光物质的激发光,被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光后照射于测样品用的光电倍增管上,由其所发生的光电流经过放大器放大输至记录仪,激发光单色器和荧光单色器的光栅均由电动机带动的凸轮所控制,
瞬态荧光光谱仪的简介
送样要求: 1、液体样品: 样品量约 3-4ml, 样品要有一定透明度。 2、固体样品: 片状样品直径8-15mm或长宽在此范围 3、粉末样品要充满3*3*10mm的样品池 4、纤维参照粉末或片状样品 技术指标: 1、稳态激发光波长范围:200~1700nm; 2、稳态发射光波长范
X荧光光谱仪技术原理
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集
拉曼光谱仪fProbe-荧光探头
fProbe 荧光探头 超过 OD4 的激光抑制 / 集成设计、操作方便 荧光探头
荧光光谱仪的工作原理
由光源氙弧灯发出的光通过切光器使其变成断续之光以及激发光单色器变成单色光后,此光即为荧光物质的激发光,被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光后照射于测样品用的光电倍增管上,由其所发生的光电流经过放大器放大输至记录仪,激发光单色器和荧光单色器的光栅均由电动机带动的凸轮所控制,
如何使用分子荧光光谱仪
分子荧光光谱法又称分子发光光谱法或荧光分光光度法,即通常所谓的荧光分析法。该法是一种利用某一波长的光线照射试样,使试样吸收这一辐射,然后在发射出波长相同或波长较长的光线的化学分析方法。如果这种再发射约在 s内发生,则称为荧光;若能在 s或更长的时间后发生,则称磷光。分子荧光光谱法就是利用这种再发射的
原子荧光光谱仪分类
原子荧光光谱仪分类有多种。1、按原子化方式可分:氢化物发生原子荧光光谱仪和冷原子荧光光谱仪等。2、按原子化器可分:石英炉原子荧光光谱仪和汞蒸气原子荧光光谱仪等。3、按原子化温度可分:高温原子荧光光谱仪和低温原子荧光光谱仪。4、按原子化能量可分:热原子荧光光谱仪和冷原子荧光光谱仪。5、按入射光束数可分
X荧光光谱仪的优点
X荧光光谱仪是一种射线式分析仪器,是X射线分析仪器的一种常用形式。X射线荧光光谱仪能分析原子序数 12~92的所有元素,选择性高,分析微量组分时受基体的影响小,在地质、采矿和冶金等部门应用很广。X荧光光谱仪的原理:元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,
原子荧光光谱仪特点
1. 实现双灯位、双注射泵、双通道全自动测量能够实现双灯同时预热,改善稳定性同时提高工作效率,节省样品和试剂用量,大幅度降低检测成本。采用双注射泵吸取样品和还原剂,提高取样精准度,保证蒸气发生反应的一致性,测试数据的精密度和准确度得以有效保证。还原剂用量可根据实际样品酸度进行精确调整,寻找蒸气反应发
X荧光光谱仪的应用
初从事近红外光谱分析的人员常常会提出这样的问题:什么样的近红外光谱仪器zui好? 如何选择一台合适的近红外光谱仪器?实际上,“zui好”仪器的定义是很难确定的, “zui好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。为了帮助使用者根据特定
原子荧光光谱仪优点
优点有较低的检出限,灵敏度高。特别对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng·cm-3、Zn为0.04ng·cm-3。现已有2O多种元素低于原子吸收光谱法的检出限。由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限。干扰较少,谱线比较简单,采用一些装置,可