原子光谱分析的原理

原子发射光谱法(AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的方法.原子发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法.原子发射光谱法包括了三个主要的过程,即:由光源提供能量使样品蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;用检测器检测光谱中谱线的波长和强度.由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定......阅读全文

原子吸收光谱分析中为什么要用锐线光源

因为原子吸收是通过空心阴极灯发射的特征谱线经过试样原子蒸气后,辐射强度(吸光度)的减弱来测量试样中待测组分的含量。  在原子吸收分析法中,要使吸光度与原子蒸气中待测元素的基态原子数之间的关系遵循朗伯-比耳定律,必须使发射线宽度小于吸收线宽度 。如果用锐线光源时,让入射光比吸收光谱窄5-10倍,则可认

原子吸收光谱分析法连续光源校正背景法

在原子吸收光谱分析法中,背景校正都是通过两次测量完成的。第一次是在分析线波长处,测量被测元素原子蒸气和共存气相物质(包括固体微粒)所产生的吸收信号(原子吸收+背景吸收),称为样品信号。第二次在分析线波长处,或邻近位置测量共存物质的吸收信号(背景吸收信号),称为参考信号。两者吸光度相减,即为扣除了背景

原子力显微镜的原理

AFM 是在STM 基础上发展起来的,是通过测量样品表面分子(原子)与AFM 微悬臂探针之间的相互作用力,来观测样品表面的形貌。AFM 与STM 的主要区别是以1 个一端固定而另一端装在弹性微悬臂上的尖锐针尖代替隧道探针,以探测微悬臂受力产生的微小形变代替探测微小的隧道电流。其工作原理:将一个对极微

原子力显微镜的原理

  原子力显微镜是用来研究包括绝缘体在内的固体材料表面结构的分析仪器。主要用于测量物质的表面形貌、表面电势、摩擦力、粘弹力和I/V曲线等表面性质,是表征材料表面性质强有力的新型仪器。另外此仪器还具有纳米操纵和电化学测量等功能。   原子力显微镜的原理:   原子力显微镜是利用原子间的相互作用力来

原子力显微镜的原理

原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表

石墨炉原子化器的原理

石墨炉原子化器是一个电加热器,利用电能加热盛放试样的石墨容器,使之达 到髙温以实现试样溶液中被测元素形成基态原子。

原子力显微镜的原理

原子力显微镜用一个探针在样品表面移动,根据探针的振动在测定样品表面的起伏。这就类似你用手触摸感受物体表面的光滑程度,所以当然不需要样品导电。

原子吸收光谱产生的原理

原理:当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。区别:吸收光谱 入射辐射的频率等于原子中的电子由基态跃迁到较高能态所需要

原子力显微镜的原理

原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表

原子吸收分析法的原理

  原子吸收的是从空心阴极灯打来的光,一个灯对应一种元素。所以原子吸收只能一次测一种元素,换个灯再测另一种。  之所以要这么干,只是因为现在的科技,做不出连续光谱的强光源。现在的连续光源一般是钨灯(可见光谱)和氘灯(紫外光谱),用于分子吸收是足够了。这些连续光源远远达不到把足够的气化后的原子激发到激

石墨炉原子化法的原理

非火焰原子化器应用最为广泛的一种,1959年苏联物理学家Б.B.利沃夫首先将原子发射光谱法中石墨炉蒸发的原理用于原子吸收光谱法中,开创了无焰原子化方式。由于原子化效率高,石墨炉法的相对灵敏度可达10-9-10-12g/ml,最适合痕量分析。它的基本原理是利用大电流(常高达数百安)通过高阻值的石墨器皿

原子发射光谱的工作原理

  原子发射光谱法(AES),是利用原子或离子在一定条件下受激而发射的特征光谱来研究物质化学组成的分析方法。根据激发机理不同,原子发射光谱有3种类型:  ①原子的核外光学电子在受热能和电能激发而发射的光谱,通常所称的原子发射光谱法是指以电弧、电火花和电火焰(如ICP等)为激发光源来得到原子光谱的分析

原子层沉积系统(ALD)的原理

  原子层沉积是通过将气相前驱体脉冲交替地通入反应器并在沉积基体上化学吸附并反应而形成沉积膜的一种方法(技术)。当前驱体达到沉积基体表面,它们会在其表面化学吸附并发生表面反应。在前驱体脉冲之间需要用惰性气体对原子层沉积反应器进行清洗。由此可知沉积反应前驱体物质能否在被沉积材料表面化学吸附是实现原子层

石墨炉原子化器的原理

  石墨炉原子化器是一个电加热器,利用电能加热盛放试样的石墨容器,使之达 到髙温以实现试样溶液中被测元素形成基态原子。

简述原子吸收光谱分析在有机物分析中的应用

  原子吸收光谱分析在有机物分析中的应用:利用间接法可以测定多种有机物。8 -羟基喹啉(Cu)、醇类(Cr)、醛类(Ag)、酯类(Fe)、酚类(Fe)、联乙酰(Ni)、酞酸(Cu)、脂肪胺(co)、氨基酸(Cu)、维生素C(Ni)、氨茴酸(Co)、雷米封(Cu)、甲酸奎宁(Zn)、有机酸酐(Fe)、

原子吸收光谱分析法背景吸收信号的空间特性

在原子化过程中,石墨管管壁和管内空间的温度分布是不均匀的,管内待测元素的原子蒸气和基体物质的蒸气浓度的分布也是不均匀的。这种分布的不均匀性又随温度而急剧变化,使石墨炉内背景吸收具有明显的空间分布特性,要求测量原子吸收与背景吸收信号时测量光束应通过炉内相同的位置。

原子吸收光谱分析中的物理干扰产生原因与消除方法

在使用原子吸收光谱仪分析时,虽然干扰很少,但也会因各种原因出现。物理干扰就是原子吸收光谱仪分析时产生的干扰的一种,物理干扰是指试样在专一、蒸发和原子化过程中,由于试样物理性质变化而因为的原子吸收信号强度变化的效应,属于非选择性干扰。物理干扰产生的原因在火焰原子吸收中,试样溶液的性质发生任何变化,都直

原子吸收光谱分析返在有机物分析中的应用

原子吸收光谱分析返在有机物分析中的应用:  利用间接法可以测定多种有机物。8 -羟基喹啉(Cu)、醇类(Cr)、醛类(Ag)、酯类(Fe)、酚类(Fe)、联乙酰(Ni)、酞酸(Cu)、脂肪胺(co)、氨基酸(Cu)、维生素C(Ni)、氨茴酸(Co)、雷米封(Cu)、甲酸奎宁(Zn)、有机酸酐(Fe)

关于发布《电热原子吸收光谱分析-方法通则》等标准的通知

  各省、自治区、直辖市教育厅(教委),新疆生产建设兵团教育局,有关部门(单位)教育司(局),部属各高等学校、部省合 建各高等学校,有关单位: 经全国教育装备标准化技术委员会审查通过,现发布以下 30 个教育行业标准:JY/T 0565-2020 电热原子吸收光谱分析方法通则 JY/T 0566-2

原子吸收光谱分析中的物理干扰产生原因与消除方法

 在使用原子吸收光谱仪分析时,虽然干扰很少,但也会因各种原因出现。  物理干扰就是原子吸收光谱仪分析时产生的干扰的一种,物理干扰是指试样在专一、蒸发和原子化过程中,由于试样物理性质变化而因为的原子吸收信号强度变化的效应,属于非选择性干扰。  物理干扰产生的原因:  在火焰原子吸收中,试样溶液的性质发

原子吸收光谱分析中的物理干扰产生原因与消除方法

  在使用原子吸收光谱仪分析时,虽然干扰很少,但也会因各种原因出现。   物理干扰就是原子吸收光谱仪分析时产生的干扰的一种,物理干扰是指试样在专一、蒸发和原子化过程中,由于试样物理性质变化而因为的原子吸收信号强度变化的效应,属于非选择性干扰。   物理干扰产生的原因:   在火焰原子吸收中,试样溶液

在原子吸收光谱分析中,影响分析结果的因素有哪些

  物理干扰   物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应。属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。   配制与被测试样相似的标准样品,是消除物理干扰的常用的方法。在不知道试样组成或无法匹

原子吸收光谱分析法间接测定技术的应用及分类

所谓间接原子吸收光谱法,就是在进行原子吸收测定之前,利用化学反应,使某些不能直接用原子吸收测定或灵敏度低的某些被测物质与易于原子吸收测定的元素进行定量反应,最后测定易于原子吸收测定元素的吸光度,间接求出被测物质的含量。因此,利用间接原子吸收可以成功地测定非金属元素、阴离子和有机化合物。间接原子吸收光

在原子吸收光谱分析中,影响分析结果的因素有哪些

  物理干扰  物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应。属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。  配制与被测试样相似的标准样品,是消除物理干扰的常用的方法。在不知道试样组成或无法匹配试样时

石墨炉原子吸收光谱分析中线性影响因素的实验研究

  在使用石墨炉原子吸收光谱法分析样品时,干扰因素较多。普遍认为:石墨炉原子吸收光谱分析时的标准曲线的相关系数远不如比色法或火焰原子吸收光谱法那样好即r>0.995不容易,在实际工作中,排除操作人员素质和样品干扰之外,如能认真分析干扰仪器影响因素,选择恰当排除干扰的办法,其标准曲线的相关系数达到0.

实验室分析方法原子光谱分析的干扰及其消除

原子光谱分析的于扰效应一般情况下比较小,但或多或少地存在种种干扰,特别是对一些特殊样品或复杂样品来说。作为原子光谱分析的一个重要分支,原子荧光光谱法的干扰类型与原子的发射光谱法和原子吸收光谱法基本类似,只是在采用的仪器装置或进样方式不同时,干扰效应的具体表现形式或相对程度有所不同。原子光谱分析法中干

实验室分析方法原子荧光光谱分析的特点

原子荧光光谱法是在原子发射光谱法和原子吸收光谱法的基础上综合发展起来的。从理论上来说,原子荧光光谱法不仅具有原子发射光谱法和原子吸收光谱法的优点,同时也克服了两者的不足,是一种性能更为优良的原子光谱分析方法,其优点可以归纳为以下几个方面。(1)高灵敏度、低检出限原子荧光的发射强度与激发光源的强度成正

原子发射与原子吸收测定的原理的区别是什么

原子发射测定的原理:首先气态原子受激到激发态.当受激的原子再从激发态驰豫回到基态时,会放出“特征波长”的光子.特征光的强度与样品中该原子的量(浓度)成正比.原子吸收测定的原理:不同原子的线光谱不同.当一种气态原子吸收该原子的一个“特征波长”光子受激到激发态时,样品吸收该特征光的“吸光度”与样品中该原

原子发射光谱分析法中的ICP光源的主要优点

1) 检出限低:许多元素可达到1ug/L的检出限2) 测量的动态范围宽:5-6个数量级3) 准确度好4) 基体效应小:ICP是一种具有6000-7000K的高温激发光源,样品又经过化学处理,分析用的标准系列很易于配制成与样品溶液在酸度、基体成分、总盐度等各种性质十分相似的溶液。同时,光源能量密度高,

光谱分析和能谱分析的区别

区别主要:前者参照的是光谱对研究物品的作用;后者参照的是能量对研究物品的作用。光谱分析:根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成