调制叶绿素荧光仪的工作原理
1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。所谓调制技术,就是说用于激发荧光的测量光具有一定的调制(开/关)频率,检测器只记录与测量光同频的荧光,因此调制荧光仪允许测量所有生理状态下的荧光,包括背景光很强时。正是由于调制技术的出现,才使得叶绿素荧光由传统的“黑匣子”(避免环境光)测量走向了野外环境光下测量,由生理学走向了生态学。经过充分暗适应后,所有电子门均处于开放态,打开测量光得到Fo,此时给出一个饱和脉冲,所有的电子门就都将该用于光合作用的能量转化为了荧光和热,此时得到的叶绿素荧光为Fm。根据Fm和Fo可以计算出PS II的最大量子产量Fv/Fm=(Fm-Fo)/Fm,它反映了植物的潜在最大光合能力。所谓饱和脉冲技......阅读全文
调制叶绿素荧光仪的工作原理
1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。所谓调制技术,就是说用于激发荧光的测量光具
调制叶绿素荧光仪的工作原理
1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。所谓调制技术,就是说用于激发荧光的测量光具
调制叶绿素荧光仪的工作原理简述
所谓饱和脉冲技术,就是打开一个持续时间很短(一般小于1 s)的强光关闭所有的电子门(光合作用被暂时抑制),从而使叶绿素荧光达到最大。饱和脉冲(Saturation Pulse, SP)可被看作是光化光的一个特例。光化光越强,PS II释放的电子越多,PQ处累积的电子越多,也就是说关闭态的电子门越
调制叶绿素荧光仪定义
调制叶绿素荧光,全称脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)叶绿素荧光,国内一般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。 调制叶绿素荧光(PAM)是研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的三大技术。由于其测
调制叶绿素荧光仪的发展
1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。所谓调制技术,就是说用于激发荧光的测量
调制叶绿素荧光仪能够测定叶绿素吗
叶绿素荧光作为光合作用研究的探针,得到了广泛的研究和应用。叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。几乎所有光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物体,因
调制叶绿素荧光仪能够测定叶绿素吗
可以叶绿素荧光作为光合作用研究的探针,得到了广泛的研究和应用。叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。几乎所有光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物体
调制叶绿素荧光仪的原理和广泛应用
在光照下光合作用进行时,只有部分电子门处于关闭态,实时荧光F比Fm要低,也就是说发生了荧光淬灭(quenching)。植物吸收的光能只有3条去路:光合作用、叶绿素荧光和热。根据能量守恒:1=光合作用+叶绿素荧光+热。可以得出:叶绿素荧光=1-光合作用-热。也就是说,叶绿素荧光产量的下降(淬灭)有
调制叶绿素荧光仪有哪些型号
PAM-101/102/103 最经典的型号,虽已停产,但在国际最著名的光合作用实验室,仍是主打机型,原因很简单,它老不坏啊,呵呵 PAM-2000/PAM-2100 最畅销的便携式机型,应用非常广泛 MINI-PAM 比PAM-2100便宜,功能同样强大 DIVING-PAM 全
多功能双调制叶绿素荧光仪的功能特点
内置叶绿素荧光诱导测量、PAM(脉冲调制)测量、OJIP快速荧光动力学测量、QA–再氧化动力学、S状态转换、叶绿素荧光淬灭等测量程序,是*的功能较为全面的叶绿素荧光仪 双调制技术,可双色调制测量光,具备调制光化学光和持续光化学光,可进行STF(单周转光闪)、TTF(双周转光闪)和MTF(多周转
多功能双调制叶绿素荧光仪的技术参数
实验程序:叶绿素荧光诱导测量;PAM(脉冲调制)测量;OJIP快速荧光动力学测量;QA–再氧化动力学;S状态转换;快速叶绿素荧光诱导 荧光参数: PAM荧光淬灭动力学测量:测量荧光淬灭动力学曲线,可计算F0,Fm,Fv,F0’,Fm’,Fv’,QY(II),NPQ,ΦPSII,Fv/Fm,F
叶绿素仪的工作原理
用途植物叶绿素仪可以即时测量植物的叶绿素相对含量(单位SPAD)或‘绿色程度',从而可以了解植物真实的硝基需求量并且帮助您了解土壤硝基的缺乏程度或是否过多地施加了氮肥。您可以通过这种仪器来增加氮肥的利用率,并可保护环境(防止施加过多的氮肥而使环境别是水源受到污染)。 工作原理叶绿素仪的工作原
叶绿素仪的工作原理
由于科学技术的进步,使我国的仪器设备行业得到了较大的发展,而且其技术水平也越来越高。在农业生产中,为了了解植物的叶绿素含量,就需要用到专业的叶绿素仪。我们知道叶绿素对于植物的光合作用影响很大,现在又由于有了先进的叶绿素仪,因此为了研究植物的生理状况,使用叶绿素仪来进行测定就使之成为可能,而且也非常方
叶绿素荧光仪原理及使用
Krause等(1980,1982)利用DCMU(敌草隆Diuron)阻断PSII受体测的原初电子受体QA到二级电子受体QB的电子传递,从而阻止了因光化学反应导致的光化学淬灭,为定量研究分析叶绿素荧光与光合作用的关系提供了可能。Bradbury等(1981,1984)利用将植物叶片快速曝光于强光下(
叶绿素荧光仪原理及使用
Krause等(1980,1982)利用DCMU(敌草隆Diuron)阻断PSII受体测的原初电子受体QA到二级电子受体QB的电子传递,从而阻止了因光化学反应导致的光化学淬灭,为定量研究分析叶绿素荧光与光合作用的关系提供了可能。Bradbury等(1981,1984)利用将植物叶片快速曝光于强光下(
叶绿素荧光的原理
1)调制叶绿素荧光调制叶绿素荧光全称脉冲-振幅-调制(Pulse-Amplitude-Modulation,PAM)叶绿素荧光,我们国内一般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。调制叶绿素荧光(PAM)是研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的
叶绿素荧光的原理
1)调制叶绿素荧光调制叶绿素荧光全称脉冲-振幅-调制(Pulse-Amplitude-Modulation,PAM)叶绿素荧光,我们国内一般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。调制叶绿素荧光(PAM)是研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的
FL3500双调制叶绿素荧光仪部分参考文献
FL3500双调制叶绿素荧光仪 (新升级型号为FL6000) FL3500双调制叶绿素荧光仪是专门用于对蓝绿藻或绿藻等微藻,叶绿体或类囊体悬浮物,乃至叶片进行光合作用研究的强大科研工具。仪器具备双通道测量控制,可控制测量样品的温度,并配备单翻转光(STF),内置多种可用户自行修改的测量程序,可进行目
叶绿素测定仪的工作原理
叶绿素测定仪可以即时测量植物的叶绿素相对含量(单位SPAD)或“绿色程度”从而可以了解植物真实的硝基需求量并且帮助您了解土壤硝基的缺乏程度或是否过多地施加了氮肥。您可以通过这种仪器来增加氮肥的利用率,并可保护环境(防止施加过多的氮肥而使环境特别是水源受到污染)。 工作原理 1.原理 两个L
调制叶绿素荧光(PAM)植物逆境的种类及研究方法
1960 年,Kautsky 及其助手第一次发现叶绿素荧光产量的变化。他们发现,将植物从暗适应状态转入光下的时候,叶绿素荧光产量在1s之内迅速上升,在这个阶段,PSII 反应中心被认为是关闭的,光化学效率降低,叶绿素荧光产量升高。在接下来的几分钟内,荧光产量逐渐下降,这种现象称为叶绿素荧
叶绿素知识与叶绿素荧光测定的原理(下)
1864年,德国科学家萨克斯做了这样一个实验:把绿色叶片放在暗处几小时,目的是让叶片中的营养物质消耗掉。然后把这个叶片一半曝光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。1880年
叶绿素知识与叶绿素荧光测定的原理(二)
1864年,德国科学家萨克斯做了这样一个实验:把绿色叶片放在暗处几小时,目的是让叶片中的营养物质消耗掉。然后把这个叶片一半曝光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。1880年
叶绿素知识与叶绿素荧光测定的原理(一)
1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。所谓调制技术,就是说用于激发荧光的测量光具有一
叶绿素知识与叶绿素荧光测定的原理(上)
1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。所谓调制技术,就是说用于激发荧光的测量光具有一
叶绿素含量测定仪的工作原理
测量值是通过对在二个不同波长区域,叶片传输光的数量进行计算,在这二个区域叶绿素对光吸收不相同的。这二个区域是红光区(对光有较高的吸收且不受胡萝卜素影响)和红外线区(对光的吸收极低)。Spad值是指叶绿素的相对含量,通过spad值可以了解植物硝基需求量,还可以推算出氮肥的含量。因为spad值跟植物叶绿
叶绿素荧光仪之叶绿素荧光名词解释
叶绿素荧光,作为光合作用研究的探针,得到了广泛的研究和应用。叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。几乎所有光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物
电光调制器的工作原理
电光调制器的基础是电光效应。根据电光晶体的折射率变化量和外加电场强度的关系,电光效应可分为线性电光效应(泡克耳斯效应)和二次电光效应(克尔效应)。因为线性电光效应比二次电光效应的作用效果明显,因此实际中多用线性电光调制器对光波进行调制。线性电光调制器可分为纵向的和横向的。在纵向的调制器中,电场平行于
声光调制器的工作原理
将信息加载于光频载波上的一种物理过程。调制信号是以电信号(调幅)形式作用于换能器上,再转化为以电信号形式变化的机械波场,当光波通过介质时,由于作用,使光载波受到调制而成为“携带”信息的强度调制波。图2无论是拉曼-纳斯衍射,还是布拉格衍射,其衍射效率均与附加相位延迟因子 有关,而其中折射率差Δn正比于
声光调制器的工作原理
将信息加载于光频载波上的一种物理过程。调制信号是以电信号(调幅)形式作用于换能器上,再转化为以电信号形式变化的机械波场,当光波通过介质时,由于作用,使光载波受到调制而成为“携带”信息的强度调制波。图2无论是拉曼-纳斯衍射,还是布拉格衍射,其衍射效率均与附加相位延迟因子 有关,而其中折射率差Δn正比于
四参数叶绿素测定仪的工作原理
1.两个LED光源发射两种光,一种是红光(峰波长650nm),一种是红外线(940nm),两种光穿透叶片,打到接收器上,光信号转换成模拟信号,模拟信号被放大器放大,由模拟/数字转换器转换成数字信号,数字信号被微处理器处理,计算出SPAD值并显示在显示屏上。 2.叶绿素测定仪测量值的校准与计算