关于锂离子电池电解质固体聚合物电解质的介绍
固体聚合物电解质(Solid polymer electrolyte,SPE),又称为离子导电聚合物(Ion-conducting polymer)。固体聚合物电解质的研究始于1973年Wright等人对聚氧化乙烯(PEO)与碱金属离子络合物导电性的发现。1979年,法国Armand等报道了PEO碱金属盐络合物在40~60℃时离子电导率达10-5S/cm,且具有良好的成膜性,可用作锂离子电池电解质。固体聚合物电解质在电子、医疗、空间技术、电致显色、光电学、传感器等方面有着广泛的应用。......阅读全文
关于锂离子电池电解质固体聚合物电解质的介绍
固体聚合物电解质(Solid polymer electrolyte,SPE),又称为离子导电聚合物(Ion-conducting polymer)。固体聚合物电解质的研究始于1973年Wright等人对聚氧化乙烯(PEO)与碱金属离子络合物导电性的发现。1979年,法国Armand等报道了PE
关于锂离子电池电解质固体聚合物简介
固体聚合物电解质(Solid polymer electrolyte,SPE),又称为离子导电聚合物(Ion-conducting polymer)。固体聚合物电解质的研究始于1973年Wright等人对聚氧化乙烯(PEO)与碱金属离子络合物导电性的发现。1979年,法国Armand等报道了PE
提高锂离子电池电解质固体聚合物的途径
对SPE性能的评价指标包括: (1)高电导率; (2)良好的力学性能; (3)稳定的电化学性能等。 提高电解质电导率有两种途径:抑制聚合物链的结晶;提高载离子浓度。共聚、交联、共混、增塑以及添加无机材料等方法,可以有效地降低聚合物的结晶度提高无定形区域的比例,同时增大了体系中载离子浓度,
概述锂离子电池电解质固体聚合物的分类
最经典的固体聚合物电解质PEO前面已经作了简要介绍,随着对PEO体系的深入研究,人们发现这个体系有很大的局限性。PEO具有结晶度高、熔点低的性质导致加工温度范围窄、氢氧化物渗透率低以及较差的界面稳定性等缺点,这大大限制了碱性固体聚合物电解质的应用范围。于是研究人员开发出各种新型的固体聚合物电解质
锂离子电池电解质固体聚合物高盐聚合物体系的介绍
在这类电解质中,低共熔盐的质量分数为80%~90%,因此影响电导率的主要因素是低共熔盐,而不是高分子,改进方向在于降低共熔盐的共熔点。在无机复盐含量10%左右达到极大值,然后其离子传导率迅速下降,并在无机复盐含量约为30%时至最低值。随着无机复盐含量的进一步增加,体系进入了“PolymerinS
锂离子电池电解质固体聚合物的基本原理介绍
锂离子电池有液态锂离子电池(LIB)和锂聚合物电池(PLIB)两类。其中,液态锂离子电池是指Li+嵌入化合物为正、负极的二次电池。正极采用锂化合物LiCoO2,LiNiO2或LiMn2O4,负极采用锂—碳层间化合物LixC6,典型的电池体系为: (-) C | LiPF6—EC+DEC | L
锂离子电池固体电解质的基本介绍
使用固体电解质,代替有机液态电解质,能够有效提高锂离子电池的安全性。固体电解质包括聚合物固体电解质和无机固体电解质。聚合物电解质,尤其是凝胶型聚合物电解质的研究取得很大的进展,目前已经成功用于商品化锂离子电池中,但是凝胶型聚合物电解质其实是干态聚合物电解质和液态电解质妥协的结果,它对电池安全性的
锂离子电池电解质固体聚合物纳米复合导体简介
纳米复合导体材料是把纳米级的陶瓷粉末等加入聚合物电解质中制成具有离子导电性的复合材料。由于分散的陶瓷粉末对水或多余的有机溶剂具有亲和作用,能够将这些杂质“俘获”,可以起到界面稳定剂的作用,所以该类固体电解质具有韧性好、电导率高、热稳定性好、易加工等优点。Scrosati报道了一种“Nano-Ma
简述锂离子电池电解质固体聚合物的导电机理
固体聚合物电解质由高分子主体物和金属盐两部分复合而成。前者含有能起配位作用的给电子基团,且基团数的多寡、是否稳定、分子链的柔性等均对固体聚合物电介质有重要影响。Armand等认为离子导电是通过离子在螺旋溶剂化结构的隧道中的跃迁而实现的。Berthier的研究结果表明,由PEO和碱金属盐形成的固体
锂离子电池电解质两相聚合物电解质DPE介绍
日本电信电话公司(NTT)的市野敏弘和西史郎等提出了两相聚合物电解质的概念(dual-phasepolymerelectrolyte,DPE),其中一相以其优良的力学性能而非导电性,另一相则形成离子导电通路。为了提高电导率,他们设计了两种不同结构的离子导电通路,即混合乳胶DPE和核壳乳胶DPE。
固体电解质应用介绍
和液态电解质相比,固体电解质的特点在于能够具有一定的形状和强度,而且由传导机理所决定,通常其传导离子比较单一,离子传导性具有很强的选择性。因此,它的应用往往也体现出这些特点。应用方面大致有: 1、用于各种化学电源,如高能密度电池,微功率电池,高温燃料电池等; 2、用于各种电化学传感器,如控制燃烧的氧
固体电解质的性能介绍
固体电解质:直接将金属锂用作负极材料具有较高的可逆容量,其理论容量高达3862mAh·g-1,是石墨材料的十倍以上,且价格较低。它被认为是新一代锂离子电池最具吸引力的负极材料,但它会产生树枝状锂。使用固体电解质作为离子传导可以抑制树枝状锂的生长,使得金属锂可以用作负极材料。
固体电解质应用
和液态电解质相比,固体电解质的特点在于能够具有一定的形状和强度,而且由传导机理所决定,通常其传导离子比较单一,离子传导性具有很强的选择性。因此,它的应用往往也体现出这些特点。应用方面大致有: 1、用于各种化学电源,如高能密度电池,微功率电池,高温燃料电池等; 2、用于各种电化学传感器,如控制
固体电解质应用
和液态电解质相比,固体电解质的特点在于能够具有一定的形状和强度,而且由传导机理所决定,通常其传导离子比较单一,离子传导性具有很强的选择性。因此,它的应用往往也体现出这些特点。应用方面大致有: 1、用于各种化学电源,如高能密度电池,微功率电池,高温燃料电池等; 2、用于各种电化学传感器,如控
固体电解质的应用
和液态电解质相比,固体电解质的特点在于能够具有一定的形状和强度,而且由传导机理所决定,通常其传导离子比较单一,离子传导性具有很强的选择性。因此,它的应用往往也体现出这些特点。应用方面大致有: 1、用于各种化学电源,如高能密度电池,微功率电池,高温燃料电池等; 2、用于各种电化学传感器,如控制燃烧的氧
关于锂电池无机固体电解质的介绍
固体聚合物电解质在实际使用时会发生锂离子电导率降低及电化学性能不稳定等现象。因此,人们又发展了一类新的无机固体电解质。1984年,M. Menetrier等研究了0.28B2S3-0.33Li2S-0.39LiI三元玻璃电解质作为常温全固态锂二次电池的电解质。1986年R. Aames等报道用玻
关于锂离子电池的电解质的介绍
溶质:常采用锂盐,如高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)。溶剂:由于电池的工作电压远高于水的分解电压,因此锂离子电池常采用有机溶剂,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯等。有机溶剂常常在充电时破坏石墨的结构,导致其剥脱,并在其表面形成固体电解质膜(
锂离子电池的电解质介绍
电解质是锂盐的有机溶液,聚合物,无机固体;电解质作为电池的重要组成部分,在正、负极之间起到输送离子和传导电流的作用,选择合适的电解质是获得高能量密度和功率密度、长循环寿命和安全性能良好的锂离子电池的关键。
聚合物固态电解质的相关介绍
聚合物固态电解质(SPE),由聚合物基体(如聚酯、聚酶和聚胺等)和锂盐(如LiClO4、LiAsF4、LiPF6、LiBF4等)构成,因其质量较轻、黏弹性好、机械加工性能优良等特点而受到了广泛的关注。发展至今,常见的SPE包括聚环氧乙烷(PEO)、聚丙烯腈(PAN)、聚偏氟乙烯(PVDF)、聚甲
硫化物固体电解质的缺点介绍
硫化物固体电解质的主要缺点包括:硫的电负性不如氧,与高压正极一起使用会使电解质层部分耗尽锂,增加界面电阻;与金属锂负极一起使用时,产生的SEI膜阻抗也较大;硫化物有机物为无机非金属颗粒,循环过程中电解质-电极界面也有比较严重的劣化。此外,材料系统对水、氧气等非常敏感,一旦发生事故也易燃;薄层也很
锂电池聚合物电解质的介绍
以聚合物电解质代替有机电解质来装配塑料锂离子电池PLI(Plasticizing Li-Ion)是锂离子电池的一个重大进步。其主要优点是高能量与长寿命相结合,具有高的可靠性和加工性,可以做成全塑结构。聚合物电解质也可以和塑料电极叠合,使PLI电池可以制成任意形状和大小,其应用将更加广泛。 早在
锂离子电池电解质高分子凝胶聚合物的简介
如果在高分子主体物中引入液体溶剂,发展增塑性高分子离子导体,这就形成了高分子凝胶聚合物电解质。Feurllade等最先提出了凝胶电解质,Abraham等进一步对其进行了表征。这种由高分子化合物-金属盐-极性有机化合物三元组分组成的电解质也是固体,但在性能和结构上与传统的固体聚合物电解质有明显差别
固体电解质气体传感器
固体电解质气体传感器使用固体电解质气敏材料做气敏元件。其原理是气敏材料在通过气体时产生离子,从而形成电动势,测量电动势从而测量气体浓度。由于这种传感器电导率高,灵敏度和选择性好,得到了广泛的应用,几乎打入了石化、环保、矿业等各个领域,仅次于金属氧化物半导体气体传感器。如测量H2S的YST-Au-
锂离子电池电解质溶液的相关介绍
溶质:常采用锂盐,如高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)。溶剂:由于电池的工作电压远高于水的分解电压,因此锂离子电池常采用有机溶剂,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯等。有机溶剂常常在充电时破坏石墨的结构,导致其剥脱,并在其表面形成固体电解质膜(
全固态电池的固体电解质简介
固体电解质,以固态形式在正负极之间传递电荷,要求固态电解质有高的离子电导率和低的电子电导率。固态化电解质大致可以分为无机固态电解质、固态聚合物电解质和无机有机复合固态电解质。 无机固态电解质是典型的全固态电解质,不含液体成份,热稳定性好,从根本上解决了锂电池的安全问题。加工性好,厚度可以达到纳
关于电解质的分类介绍
强电解质(strong electrolyte)是在水溶液中或熔融状态中几乎完全发生电离的电解质,完全电离,不存在电离平衡。弱电解质(weak electrolyte)是在水溶液中或熔融状态下不完全发生电离的电解质。强弱电解质导电的性质与物质的溶解度无关。 强电解质 一般有:强酸、强碱,活泼
关于电解质的基本介绍
电解质是溶于水溶液中或在熔融状态下自身能够导电的化合物。根据其电离程度可分为强电解质和弱电解质,几乎全部电离的是强电解质,只有少部分电离的是弱电解质。 电解质都是以离子键或极性共价键结合的物质。化合物在溶解于水中或受热状态下能够解离成自由移动的离子。离子化合物在水溶液中或熔化状态下能导电;某些
锂聚合物电池按电解质的分类介绍
锂聚合物电池按电解质可分为三类: 1、凝胶聚合物电解质锂离子电池,它是在固体聚合物电解质中加入添加剂提高离子电导率,使电池可在常温下使用; 2、固体聚合物电解质锂离子电池,电解质为聚合物与盐的混合物,在常温下的离子电导率低,适于高温使用; 3、复合凝胶聚合物正极材料的锂离子电池,导电聚合物
锂离子电池电解质要求
1、锂离子电导率:电解质不具有电子导电性,但必须具有良好的离子导电性,一般温度范围内,电解质的电导率在1×10-3~2×10-3S/cm之间。作为电解质,其必须具有优异的离子导电性和电子绝缘性,使其发挥离子传输介质的功能,同时减少本身的自放电。2、离子迁移数:锂电池内部输运电荷依赖离子的迁移,高离子
氧化物固体电解质的不足之处介绍
氧化物固体电解质的不足也源于无机氧化物的固有特性:对于电极-电解质界面,界面接触能力较差,循环过程中界面稳定性也较差,导致循环过程中界面阻抗迅速增加.负极有效容量不足,电池寿命衰减较快;薄层也很困难。因此,氧化物固体电解质往往需要添加一些聚合物成分并与微量离子液体/高性能锂盐-电解质混合,或使用