《科学》:科学家开发出分离碳纳米管技术

根据导电性质的不同,碳纳米管可分为金属型和半导体型,但在合成过程中,两种类型的碳纳米管总是混合在一起。美国杜邦公司和康奈尔大学的研究人员最近开发了一种分离不同类型碳纳米管的技术,《科学》杂志1月9日刊登了这一成果。 碳纳米管韧性高、导电性强、场发射性能优良,兼具金属性和半导体性,有“超级纤维”之称。自1991年被发现以来,碳纳米管在众多领域的应用前景吸引了广泛关注,不过由于合成过程中易出现混合现象,其应用受到严重限制。因此,国际上不少国家的科研机构都致力于碳纳米管分离技术的研究。 在最新成果中,研究人员利用氟基分子接触碳纳米管,借助氟基分子会通过一个名为“环加成反应”的过程有效抑制金属型碳纳米管性质的特性,将半导体型碳纳米管筛选出来,从而将两种不同类型的碳纳米管分离开。环加成反应是指两个共轭体系结合成环状分子的一种双分子反应。 研究人员表示,这项技术使将来大规模生产半导体型碳纳米管成为可能,并有望应......阅读全文

科学家用碳纳米管打造超级蛛丝。

科学家用碳纳米管打造超级蛛丝。  蜘蛛侠一定会很嫉妒。蜘蛛能织出加入了碳纳米管甚至是石墨烯的网,从而使具有打破纪录特性的新材料拥有更加光明的应用前景。  石墨烯是强韧的人造材料之一,而蜘蛛丝是最强韧的天然材料之一。为此,来自意大利特伦托大学的Nicola Pugno想知道如果将两者结合起来会发生什么

超长碳纳米管束拉伸强度秒杀所有纤维

  记者16日从清华大学化工系魏飞教授团队获悉,该团队与清华大学航天航空学院李喜德教授团队合作,在超强碳纳米管纤维领域取得重大突破——在世界上首次报道了接近单根碳纳米管理论强度的超长碳纳米管管束,其拉伸强度超越已知所有其他纤维材料。  碳纳米管被认为是目前发现的最强的几种材料之一,理论计算表明,其是

可拉伸单壁碳纳米管超级电容器问世

  可拉伸的电子器件由于其在生物医疗(如电子化“皮肤”)、电子(如可穿戴式电子设备如苹果公司新注册的“Bi-Stable环弹性屏幕”、电子纸显示器)、电源(如便携电池)等领域展现出的绝佳应用前景而倍受关注。而作为这些电子设备重要组成部分,其能量的储存和供给单元也需要提供良好的可拉伸性。   来自新

苏州纳米所发表碳纳米管纤维研究综述

  碳纳米管是一种潜力巨大的超级材料,是构建未来超强结构和碳基半导体器件的理想核心基础材料。将碳纳米管组装成宏观体(如纤维、薄膜和泡沫等)是实现碳纳米管宏量应用的重要途径之一。碳纳米管纤维是碳纳米管的一维连续组装体,其不仅可以单独使用,而且可以通过编织形成二维薄膜或者三维编织结构,成为最受关注的碳纳

纤维状碳纳米管电池可织成“能源衣”

  若从最近谷歌眼镜(Google Glass)的新品发布和苹果iWatch智能腕表即将上市的种种迹象来看,可穿戴电子产品将可能掀起下一个新科技浪潮。为了解决这类产品的电力供应问题,中国上海复旦大学的研究人员首次制备出基于碳纳米管(CNT)的纤维状全锂离子电池,可被灵活地编织成具有高性能的柔性能源纺

碳纳米管纤维:可以穿上身的充电电池

  在只有头发丝十万分之一的纤维上实现既发电又储能,还能把它织成衣服穿上身?   近日,原创性研究领域权威期刊《应用化学》(Angewandte Chemie International Edition)的封面文章刊登了复旦大学高分子科学系彭慧胜教授课题组的最新研究成果。   2006年,彭

苏州纳米所碳纳米管纤维研究取得新进展

  碳纳米管被称为终极纤维。通过组装形成的碳纳米管纤维具有轻质、高强、多功能性等特点,成为新一代特种纤维材料,对21世纪高端科技发展有着重大的战略意义。   最近,中科院苏州纳米技术与纳米仿生研究所功能纳米碳材料课题组在李清文研究员带领下,在攻克可纺丝碳纳米管阵列可控生长关键技术基础上,以实验及理

树木纤维素可做超级储能装置

  加拿大麦克马斯特大学工程研究人员正在把树木变成能够更高效、更持久的存储电能的装置或电容器,以驱动从智能手表到混合动力汽车等电动设备。该研究发表在最新一期的《先进材料》杂志上。   科学家正在使用植物、细菌、藻类和树木中的有机物纤维素,建立更高效、更持久的储能装置或电容器。这种发展为轻量级的、灵活

我国科学家在超强碳纳米管纤维领域取得重要突破

  碳纳米管被认为是目前人类发现的强度最高的几种材料之一,其杨氏模量高达1 TPa以上,拉伸强度高达100 GPa以上(比强度更是高达62.5 GPa/(g/cm3)),超过T1000碳纤维强度10倍以上。理论计算表明,碳纳米管是目前唯一有可能帮助我们实现太空电梯梦想的材料。如何将一根根碳纳米管组装

我国科学家在超强碳纳米管纤维领域取得重要突破

  碳纳米管被认为是目前人类发现的强度最高的几种材料之一,其杨氏模量高达1 TPa以上,拉伸强度高达100 GPa以上(比强度更是高达62.5 GPa/(g/cm3)),超过T1000碳纤维强度10倍以上。理论计算表明,碳纳米管是目前唯一有可能帮助我们实现太空电梯梦想的材料。如何将一根根碳纳米管组装

我国科学家在超强碳纳米管纤维领域取得重要突破

  碳纳米管被认为是目前人类发现的强度最高的几种材料之一,其杨氏模量高达1 TPa以上,拉伸强度高达100 GPa以上(比强度更是高达62.5 GPa/(g/cm3)),超过T1000碳纤维强度10倍以上。理论计算表明,碳纳米管是目前唯一有可能帮助我们实现太空电梯梦想的材料。如何将一根根碳纳米管组装

我国科学家在超强碳纳米管纤维领域取得重要突破

   碳纳米管被认为是目前人类发现的强度最高的几种材料之一,其杨氏模量高达1 TPa以上,拉伸强度高达100 GPa以上(比强度更是高达62.5 GPa/(g/cm3)),超过T1000碳纤维强度10倍以上。理论计算表明,碳纳米管是目前唯一有可能帮助我们实现太空电梯梦想的材料。如何将一根根碳纳米管组

我国科学家在超强碳纳米管纤维领域取得重要突破

  碳纳米管被认为是目前人类发现的强度最高的几种材料之一,其杨氏模量高达1 TPa以上,拉伸强度高达100 GPa以上(比强度更是高达62.5 GPa/(g/cm3)),超过T1000碳纤维强度10倍以上。理论计算表明,碳纳米管是目前唯一有可能帮助我们实现太空电梯梦想的材料。如何将一根根碳纳米管组装

苏州纳米所在可穿戴纤维器件研究领域取得新进展

  作为碳纳米管纤维的重要发展方向,柔性纤维状可编织电学器件正处于蓬勃发展阶段。柔性纤维状的电学器件,如纤维状锂离子电池、纤维状太阳能电池、纤维状记忆存储器及纤维状超级电容器,可以编织成各类织物,与人们日常穿戴结合起来,用于制备智能织物。碳纳米管纤维,以其柔性、质轻、高导电及多级界面等特点非常适合作

物理所碳纳米管薄膜简洁超级电容器研究取得新进展

  最近,中科院物理研究所/北京凝聚态物理国家实验室(筹)先进材料与结构分析实验室“纳米材料与介观物理”课题组提出了一种结构简单、重量轻、能量密度和功率密度高的碳纳米管薄膜简洁式超级电容器及其制备方法。相关研究结果发表在Energy & Environmental Science(2011, 4,

锂离子电池负极材料纳米碳管的特性简介

  1.碳纳米管的力学性能  理论和实验研究表明,碳纳米管具有极高的强度,理论计算值为钢的100倍。同时碳纳米管具有极高的韧性,十分柔软,被认为是未来的超级纤维。这里的纳米碳管的力学概念是指,以单个单质特性存在的闭合全同粒子的原子力学性质。  2.碳纳米管的发射性能  单壁碳纳米管的直径通常是几个纳

碳纳米管/石墨烯:纳米材料技术的领头羊

  纳米技术是通过对纳米尺度物质的操控来实现材料、器件和系统的创造和利用,例如,在原子、分子和超分子水平上的操控纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。纳米碳材料是指尺度至少有一维小于100纳米的碳材料。纳米碳材料主要包括四种类型

制备超级电容器电极材料的制备方法有哪些

超级电容器的类型比较多,按不同方式可以分为多种产品,以下作简单介绍。按原理分为双电层型超级电容器和赝电容型超级电容器:双电层型超级电容器1.活性碳电极材料,采用了高比表面积的活性炭材料经过成型制备电极。2.碳纤维电极材料,采用活性炭纤维成形材料,如布、毡等经过增强,喷涂或熔融金属增强其导电性制备电极

柔性微型超级电容器技术-衣服可以当电源

  电池可以当衣服穿吗?乍一听,似乎闻所未闻,不过在不久的将来,随身携带电池可能就是把柔性电池织成的衣服穿在身上了。   新加坡南洋理工大学(NTU)、中国清华大学和美国凯斯西储大学的联合团队开发出一种像纤维一样的柔性微型超级电容器,可织成衣服作为穿戴式医疗监控、通讯设备或其他小型电子产品的电源,在

复旦研发纤维制太阳能电池

  不知你是否想过,有一天穿在身上的衣服、戴在头上的帽子、拎在手里的包都能够 “自我发电”,给你“奄奄一息”的手机充电呢?你是否能够想象,现在占地面积庞大的发电站,未来只需要一个桌子大小的机器就能发电?昨天从复旦大学举行的新闻发布会获悉,该校先进材料实验室、高分子科学系彭慧胜教授课题组最近成功研

只有泡沫镍和材料怎么制备超级电容器工作电极

超级电容器,将材料涂到泡沫镍上制备工作电极,是涂单面还是双面超级电容选用石墨做电极材料:第一,是因为石墨材料的电化学稳定性较好,可以让超级电容承受较高单体电压。电极不容易损耗。第二,是因为石墨材料加工速度快,成本低。第三,是因为石墨材料,重量轻,导热和导电性能好。用于超级电容器的电极材料主要是碳材料

为什么一些材料可以长在泡沫镍上

超级电容器,将材料涂到泡沫镍上制备工作电极,是涂单面还是双面超级电容选用石墨做电极材料: 第一,是因为石墨材料的电化学稳定性较好,可以让超级电容承受较高单体电压。电极不容易损耗。第二,是因为石墨材料加工速度快,成本低。第三,是因为石墨材料,重量轻,导热和导电性能好。用于超级电容器的电极材料主要是碳材

《科学》:科学家开发出分离碳纳米管技术

根据导电性质的不同,碳纳米管可分为金属型和半导体型,但在合成过程中,两种类型的碳纳米管总是混合在一起。美国杜邦公司和康奈尔大学的研究人员最近开发了一种分离不同类型碳纳米管的技术,《科学》杂志1月9日刊登了这一成果。 碳纳米管韧性高、导电性强、场发射性能优良,兼具金属性和半导体性,有“超级纤维”之称。

水驱动下的碳纳米管复合纤维致动器研究中取得进展

  致动器是一种能够在外界信号源的驱动下产生一定的位移响应或提供力学输出的器件,亦称人工肌肉。这种器件将其他形式的能量转化为机械能,其种类及应用都十分广泛。例如,大家熟知的电动机就是一种典型的电致动器。此外,用于制造卫星天线的形状记忆合金、产生精准位移的压电陶瓷等,也都可看作是致动器。  碳纳米管是

苏州纳米所等制备出高性能纤维状铵根离子赝电容负极

铵根离子作为非金属离子,具有安全性高、摩尔质量低、水合离子半径小、离子电导率高、资源丰富等特点,在可穿戴水系超级电容器中表现出较大优势。高能量密度柔性铵根离子非对称超级电容器的应用前景广阔,但由于缺乏高容量赝电容负极相关研究,发展高能量密度的铵根离子非对称超级电容器仍具有挑战性。近日,中国科学院苏州

物理所等基于碳纳米管薄膜的柔性储能器件研究取得进展

  单壁碳纳米管作为典型的一维纳米材料,由于其独特的结构而具有许多优异的物理及化学性质,在力学,电学,光学及电化学等方面有着潜在的应用。如何实现碳纳米管的潜在应用,以及提高碳纳米管在实际应用中的性能是目前研究者们关注的焦点。   中科院物理研究所/北京凝聚态物理国家实验室(筹)先进材料与结构分析实

新一代材料碳纳米管崭露头角

  “碳纳米管是我所能见到的最好的导电材料。”   美国赖斯大学化学和材料科学教授安德鲁·巴伦希望用这种材料制成一些非常大东西,例如几千英里长的高导电电力传输线,用于建设更有效的能源网格。   而这也是赖斯大学已故教授理查德·斯莫利一个未完成的构想,他因为发现了碳纳米而荣膺诺贝尔化学奖。   

苏州纳米所在碳纳米材料高能柔性电容器中取得进展

  随着现代科学技术的发展,柔性、可穿戴、可折叠、智能化是电子设备发展的主流方向,为电子产品提供能量的储能器件也逐步向轻、薄、韧等方向发展。柔性超级电容器是一种储能器件,具有高容量、充放电速度快、安全环保等特点,在新兴的电子智能设备等高新技术上有着广阔的应用前景。碳纤维和碳纳米管纱布等碳纺织品作为柔

高纯度碳纳米管材料产业化项目落户北京纳米科技产业园

  近日,清华大学魏飞教授团队“高纯度碳纳米管材料产业化”项目正式签约落户北京纳米科技产业园。前期北京市科委支持该团队开展“高纯度单壁碳纳米管制备及超级电容器研制”,此次签约标志着又一重大科研成果走出实验室走向产业化,同时标志着北京纳米科技产业园碳纳米材料与应用板块产业聚集优势更加明显。   魏飞

物理所碳纳米管薄膜基人工肌肉致动器研究取得进展

  碳纳米管自上世纪九十年代初发现以来,一直是人们研究的热点。各种类型的碳纳米管及其宏观聚集体陆续被报道,其优异的力学、电学性能也不断地被挖掘,用以制备高性能的多功能纳米复合材料、超级电容器及致动器等。   中科院物理研究所/北京凝聚态物理国家实验室(筹)先进材料与结构分析实验室“纳米材料与介观物