无机全固态薄膜锂电池的研究方向介绍
(1)研发新的电池结构,提高电池单位面积的容量、放电功率,解决薄膜锂电池单位面积容量和功率低的问题; (2)研究新型高离子电导率的固态电解质,解决无机固态电解质锂离子电导率低的问题; (3)研究新型正、负极,使成膜后的正、负极具有更。......阅读全文
科学家揭示全固态锂电池稳定性机制
中新网北京9月13日电(记者孙自法)记者9月13日从中国科学院金属研究所获悉,该所沈阳材料科学国家研究中心王春阳研究员与美国加州大学尔湾分校忻获麟教授团队合作,最新研发并利用人工智能“超级显微镜”——人工智能辅助的透射电子显微镜技术,揭示出全固态锂电池中的层状氧化物正极材料的原子尺度结构退化路径,发
2025化学与材料科学研究十大热点前沿公布
12月3日,中国科学院与科睿唯安公司面向全球发布年度《2025研究前沿》,报告以文献计量学中的共被引分析方法为基础,研究分析科睿唯安ESI数据库中的13830个研究前沿,旨在发现较为活跃或发展迅速的研究前沿,遴选出11大学科领域的TOP10热点前沿和18个新兴前沿,并评估中国、美国、英国、德国、
爱康拟向薄膜新材料研发方向发展
日前,爱康太阳能(SHE:002610)发布公告称,其全资子公司苏州爱康光伏新材料有限公司经苏州市张家港市工商行政管理局核准,公司名称由“苏州爱康光伏新材料有限公司”变更为“苏州爱康薄膜新材料有限公司”。经营范
AEM:用于高稳定性锂硫电池的安全电解液系统设计
图1 锂电池中的穿梭反应示意图 安全性、无毒性和耐用性直接决定了锂(Li)电池基本的适用性。特别是对于锂硫电池,由于硫的起燃温度低,作为负极材料的金属锂以及使用易燃的有机电解质使得解决安全问题的难度增加。在过去的几年里,为了解决安全问题,人们对两种基本的电解质系统进行了广泛的研究。一个系统是传
关于无机固态电解质的研究介绍
应用无机固态电解质的电池相对于电解液电池有诸多优势,如电化学稳定、热稳定、抗震、耐冲击、不存在漏液和污染问题,易于小型化及制成薄膜。优良的无机固态电解质应当具有以下特点: (1)在锂活性状态和环境温度范围内具有高锂离子电导率和几乎可以忽略的电子电导率; (2)必须在电化学反应下保持稳定,尤其
李泓:全固态电池预计2020年到2025年上市
当前,电动汽车的发展引人关注,业界对于新能源汽车的前景寄予厚望。作为核心部件的电池,选择什么样的正负极材料也备受争议。在日前举办的中国电动汽车百人会2017论坛上,中科院物理研究所研究员李泓向记者表示,全固态金属锂电池应当是未来电动车电池的发展方向,预计全固态电池会在2020年到2025年间首批
李泓:全固态电池预计2020年到2025年上市
当前,电动汽车的发展引人关注,业界对于新能源汽车的前景寄予厚望。作为核心部件的电池,选择什么样的正负极材料也备受争议。在日前举办的中国电动汽车百人会2017论坛上,中科院物理研究所研究员李泓向记者表示,全固态金属锂电池应当是未来电动车电池的发展方向,预计全固态电池会在2020年到2025年间首批
新路线进一步释放全固态锂电池潜力
中国科学技术大学教授马骋提出了一种关于全固态电池正极材料的新型技术路线,可以大幅提升复合物正极中的活性物质载量,从而更充分地发挥出全固态锂电池在能量密度上的潜力。相关研究成果近日发表于《自然-通讯》。 全固态锂电池由于用不可燃的无机固态电解质替代了有机液态电解质,因此相较目前商业化锂离子电池而
相较传统锂离子电池,固态电池有哪些技术优势?
优势一是轻。使用了全固态电解质后,锂离子电池的适用材料体系也会发生改变,其中核心的一点就是可以不必使用嵌锂的石墨负极,而是直接使用金属锂来做负极,这样可以明显减轻负极材料的用量,使得整个电池的能量密度有明显提高。优势二是薄。传统锂离子电池中,需要使用隔膜和电解液,它们加起来占据了电池中近40%的体积
人工智能辅助科学家揭示全固态锂电池稳定性机制
近期,中国科学院金属研究所沈阳材料科学国家研究中心研究员王春阳与加州大学尔湾分校教授忻获麟团队合作开发出人工智能辅助的透射电子显微镜技术,并利用该技术揭示了全固态电池中的层状氧化物正极材料的原子尺度结构退化路径,发现了与液态电池中完全不同的演化机制。相关研究成果日前发表于《美国化学会志》(Journ
中国科大提出一种新型技术路线-充分释放全固态锂电池
16日从中国科学技术大学获悉,该校马骋教授提出了一种关于全固态电池正极材料的新型技术路线,可以大幅提升复合物正极中的活性物质载量,从而更充分地发挥出全固态锂电池在能量密度上的潜力。3月14日,研究成果发表于国际著名学术期刊《自然-通讯》(Nature Communications)。 电池技术是新
全固态电池的界面问题介绍
全固态锂电池,一个重要的技术难点是电解质与电极之间形成高电阻界面问题。整个技术都还在发展过程中,对此问题暂时没有统一的观点,一般推测的全固态电池正负极与电解质之间的界面形成原因: 1)由于外加电压高于电解质能够承受的电压范围,使得电解质发生氧化或者还原,进而在正极或者负极表面上形成界面; 2
我国开发,超强全固态锂电池电解质问世!
日前从中国科学技术大学获悉,该校马骋教授开发了一种新型固态电解质,它的综合性能与目前最先进的硫化物、氯化物固态电解质相近,但成本不到后者的4%,适合进行产业化应用。6月27日,该成果发表在国际著名学术期刊《自然·通讯》上。研究人员介绍,氧氯化锆锂能以目前最低的成本实现和当下最先进的硫化物、氯化物
我国首次精准“透视”全固态锂电池锂浓度分布
我国科学家突破全固态锂电池关键难题。记者从中核集团获悉,近日,中核集团中国原子能科学研究院与清华大学深圳国际研究生院依托中国先进研究堆,利用中子深度剖面分析技术,精准揭示了全固态锂电池传统单层正极的关键缺陷,首次通过实验直接观测并定量证实了显著的纵向锂浓度梯度,在电极厚度方向上实现了锂浓度的均匀分布
全固态锂电池电解质开发!性能全面领先
中国科学技术大学教授马骋开发了一种新型固态电解质,它的综合性能与目前最先进的硫化物、氯化物固态电解质相近,但成本不到后者的4%,适合进行产业化应用。6月27日,该成果发表在国际著名学术期刊《自然-通讯》上。 全固态锂电池可以克服目前商业化锂离子电池在安全性上的严重缺陷,同时进一步提升能量密度,
访南策文院士:锂电池远未触及“天花板”
3月1日,四部委印发《促进汽车动力电池产业发展行动方案》,对电池性能、产能、安全性、材料和装备提出明确要求。面对1000亿瓦时的跨越式发展图景,产业界当如何面对“层出不穷”的新技术?本刊日前采访了中国科学院院士、清华大学材料科学与工程研究院院长南策文,他认为,全固态锂电池会极大提高安全性和性能,
我国科研人员解决全固态金属锂电池界面接触难题
记者从中国科学院物理研究所获悉,由该所研究员黄学杰团队联合华中科技大学、中国科学院宁波材料技术与工程研究所等组成的研究团队开发出一种阴离子调控技术,解决了全固态金属锂电池中电解质和锂电极之间难以紧密接触的难题,为其走向实用化提供了关键技术支撑。相关研究成果已于7日发表在国际学术期刊《自然-可持续发展
人工智能辅助科学家揭示全固态锂电池稳定性机制
近期,中国科学院金属研究所沈阳材料科学国家研究中心研究员王春阳与加州大学尔湾分校教授忻获麟团队合作开发出人工智能辅助的透射电子显微镜技术,并利用该技术揭示了全固态电池中的层状氧化物正极材料的原子尺度结构退化路径,发现了与液态电池中完全不同的演化机制。相关研究成果日前发表于《美国化学会志》(Journ
酶制剂研究的方向
酶的稳定性是酶应用中的一个问题,对于饲料加工过程中温度和挤压对酶活性的影响,目前已经提出几种方法:冷压制粒、载体吸附法、浸泡或湿拌料法、微囊包被技术、制粒后喷洒等,以提高酶活性和热稳定性。 微生物的生产属于微生物发酵的范畴。而应用属于畜牧业的范畴,由于专业间的差异,给酶制剂的管理造成一定困难。目前
锂电池无机成膜添加剂钴的国外发展历史介绍
德国和挪威最早生产了少量的钴,1874年开发了新喀里多尼亚的氧化钴矿。 1903年加拿大安大略北部的银钴矿和砷钴矿(方钴矿)开始生产,使钴的世界产量由1904年的16t猛增至1909年的1553t。 1920年扎伊尔加丹加省的铜钴矿带开发后,钴产量一直居世界首位,摩洛哥用砷钴矿生产钴,这段时
关于锂电池无机成膜添加剂钴的工业用途介绍
钴的物理、化学性质决定了它是生产耐热合金、硬质合金、防腐合金、磁性合金和各种钴盐的重要原料。钴基合金或含钴合金钢用作燃汽轮机的叶片、叶轮、导管、喷气发动机、火箭发动机、导弹的部件和化工设备中各种高负荷的耐热部件以及原子能工业的重要金属材料。钴作为粉末冶金中的粘结剂能保证硬质合金有一定的韧性。磁性
固态锂离子电池向产业化近一步,这个物质很有用
5日从中国科学院青岛生物能源与过程研究所获悉,该研究所武建飞研究员带领的先进储能材料与技术研究组,在硫化物全固态锂离子电池领域的基础科学问题和电池规模化制备技术方面,取得了一系列突破性新进展。相关成果发表在国际期刊《化学电化学》上。 硫化物全固态锂离子电池凭借高能量、快速充放电、低温性能好以及高
全固态电池研究获新进展
全固态电池因其更高的安全性和能量密度潜力,被视为下一代储能技术的关键发展方向。然而,固态电极内部复杂的电荷传输过程,尤其是离子与电子传输的不平衡,导致电极内部电化学反应严重不均,形成显著的锂浓度梯度。这如同在电池内部出现了“交通拥堵”,极大降低了活性材料利用率,加速了电池性能衰减,成为制约其性能
免疫方向研究思路
在“蛋白组学在临床科研中的应用”这一系列的文章中,我们分享了眼科、内分泌、心血管、神经等方面的研究思路。今天我们来介绍一个非常重要的,并且离不开蛋白质组学研究的一个学科——免疫方向的科研套路,哦不,是思路。话不多说,满满干货! 第一篇, 强直性脊椎炎杂志:Cts-Clin Transl S
均质化正极材料实现全固态锂电池重要突破
想象一下,如果你的手机电池不仅更安全、体积更小,而且充电一次可以用更久,那该多好!最近,科学家们在电池技术方面取得了一项重大突破,这可能会让这样的梦想成为现实。 你可能听说过手机、电脑和其他电子设备中使用的锂离子电池。这些电池通过液体电解质来储存和释放能量。但是,科学家们正在研究一种新型电池—
均质化正极材料实现全固态锂电池重要突破
想象一下,如果你的手机电池不仅更安全、体积更小,而且充电一次可以用更久,那该多好!最近,科学家们在电池技术方面取得了一项重大突破,这可能会让这样的梦想成为现实。你可能听说过手机、电脑和其他电子设备中使用的锂离子电池。这些电池通过液体电解质来储存和释放能量。但是,科学家们正在研究一种新型电池——全固态
关于全固态电池的界面问题介绍
全固态锂电池,一个重要的技术难点是电解质与电极之间形成高电阻界面问题。整个技术都还在发展过程中,对此问题暂时没有统一的观点,一般推测的全固态电池正负极与电解质之间的界面形成原因: 1)由于外加电压高于电解质能够承受的电压范围,使得电解质发生氧化或者还原,进而在正极或者负极表面上形成界面; 2
有机无机复合光催化薄膜可高效分解水制氢
近日,陕西科技大学化学与化工学院李伟副教授课题组在有机-无机复合光催化薄膜制备和平板式分解水制氢方面取得进展,相关研究成果发表在《自然-通讯》上。太阳能驱动的平板H2O-to-H2 (HTH)转化是一项将太阳能转换成增值化学能的新型生产技术。然而,由于平板反应器中流体和气泡的机械剪切力影响,绝大多数
有机无机复合光催化薄膜可高效分解水制氢
近日,陕西科技大学化学与化工学院李伟副教授课题组在有机-无机复合光催化薄膜制备和平板式分解水制氢方面取得进展,相关研究成果发表在《自然-通讯》上。太阳能驱动的平板H2O-to-H2 (HTH)转化是一项将太阳能转换成增值化学能的新型生产技术。然而,由于平板反应器中流体和气泡的机械剪切力影响,绝大多数
日本大力研发全固态电池
日本新能源产业技术综合开发机构日前宣布,该国部分企业及学术机构将在未来5年内联合研发下一代电动车全固态锂电池,力争早日应用于新能源汽车产业。 该项目预计总投资100亿日元(约合5.8亿元人民币),丰田、本田、日产、松下等23家汽车、电池和材料企业,以及京都大学、日本理化学研究所等15家学术机构