锂电池材料硼酸盐的药物分析实验

硼酸—硼酸的测定—中和滴定法 应用范围: 本方法采用中和滴定法测定硼酸(H3BO3)的含量。 本方法适用于硼酸的测定。 方法原理: 取供试品适量,加甘露醇与新沸过的冷水,微温使溶解,迅即放冷至室温,加酚酞指示液,用氢氧化钠滴定液(0.5mol/L)滴定至显粉红色。每1mL氢氧化钠滴定液(0.5mol/L)相当于30.92mg的H3BO3,计算,即得。 试剂: 1.水(新沸放置至室温) 2.甘露醇 3. 氢氧化钠滴定液(0.5mol/L) 4.酚酞指示液 5.基准邻苯二甲酸氢钾 试样制备: 1.氧化钠滴定液(0.5mol/L) 配制:取氢氧化钠适量,加水振摇使溶解成饱和溶液,冷却后,置聚乙烯塑料瓶中,静置数日,澄清后备用。取澄清的氢氧化钠饱和溶液28mL,加新沸过的冷水使成1000mL,摇匀。 标定:取在105℃干燥至恒重的基准邻苯二甲酸氢钾约3g,精密称定,加新沸过的冷水50mL,振摇,使其尽量......阅读全文

锂电池材料硼酸盐的药物分析实验

  硼酸—硼酸的测定—中和滴定法  应用范围:  本方法采用中和滴定法测定硼酸(H3BO3)的含量。  本方法适用于硼酸的测定。  方法原理:  取供试品适量,加甘露醇与新沸过的冷水,微温使溶解,迅即放冷至室温,加酚酞指示液,用氢氧化钠滴定液(0.5mol/L)滴定至显粉红色。每1mL氢氧化钠滴定液

锂电池材料硼酸盐的简介

  硼酸盐是指与三氧化二硼有关伪盐类的通称。通常仅指正硼酸的盐。硼酸盐也包括偏硼酸盐、原硼酸盐、和多硼酸盐等。最重要的硼酸盐是四硼酸钠,俗称硼砂。  硼酸盐与强酸水溶液作用析出正硼酸。自然界中主要来源是与硼砂有关的矿物。可用于制造硼硅玻璃、陶瓷釉彩、透明搪瓷、去污剂、软水剂、防火材料、防腐剂和助熔剂

锂电池材料硼酸盐的分类介绍

  硼酸盐是一大类硼酸化合物矿物。分为无水硼酸盐和含水硼酸盐。后者较常见。大部分硼酸盐是镁、钙和钠的盐。已经知道的还有含相当数量钾、铁、铝、锂、锰等等的硼酸盐。最有名的硼酸盐是方硼石、水方硼石、硼砂、硬硼钙石等。  硼酸盐的最大聚积是在古代湖泊沉积物或变干海的沉积物中。硼酸盐常常在泥火山产物中由热水

锂电池材料硼酸盐的鉴别介绍

  1.原理  (1)姜黄试纸浸入盐酸酸化的硼酸盐溶液,干燥后即产生硼螯合物而显棕红色,再用氨试液湿润,生成玫瑰青苷,硼酸盐量少时为蓝色,量多时为绿黑色。  (2)固体供试品在浓硫酸中与甲醇生成硼酸甲酯。  HBO2+CH3OH——→2H2O+B(OCH3)3↑(反应条件:浓硫酸)  硼酸甲酯具挥发

锂电池材料硼酸盐的基本信息介绍

  硼酸盐类矿物韵主要阳离子为钙、镁和钠,其次为铁、锰等。许多硼酸盐含有水分子,有时还存在Cl-,OH-,O2-等附加阴离子。硼酸盐的结晶构造很近似硅酸盐 [5] 。由于其呈平面三角形的络阴离子BO3-既可独立存在,又可彼此以三角形的顶点相连,形成复杂的络阴离子,故在硼酸盐的结晶构造中亦有岛状、链状

锂电池控制电解液材料氧化镁的药物分析实验

  方法名称:  氧化镁的测定—中和滴定法  应用范围:  该方法采用滴定法测定氧化镁的含量。  该方法适用于氧化镁。  方法原理:  供试品精密加硫酸滴定液(0.5mol/L)溶解后,加甲基橙指示液,用氢氧化钠滴定液(1mol/L)滴定,读出氢氧化钠滴定液使用量,计算,即得。  试剂:  1、水(

关于锂电池正极材料硅酸盐的实验分析介绍

  1 仪器与试剂  仪器:家用微波炉。  试剂:水泥熟料标样;普通硅酸盐水泥标样;水泥生料标样;TEA(三乙醇胺)(体积配合比1:2);盐酸;KOH溶液;EDTA标样;钙黄绿素-甲基百里香酚蓝-酚酞混合指示剂(CMP混合指示剂)。  2 实验方法  (1)EDTA标液的标定  首先取一定体积的Ca

关于锂电池材料铝箔出口数据的分析

  铝箔是铝加工材产业中附加值较高的细分产品,行业发展迅速,市场规模与产销量连年保持高速增长,由于其在导热、循环利用领域优异的应用性能,使得铝箔在家电、包装等方面的应用得到极大拓展。  我国包装工业的发展,极大地带动了铝箔行业的消费,“十二五”期间建设民生工程、发展低碳经济对高性能铝箔材将有较强的需

新疆理化所设计合成新型硼酸盐光学晶体材料

  硼酸盐具有丰富的化学结构,B原子可采用BO3和BO4两种配位方式,并进一步聚合成一维的链、二维的层和三维的网络,使硼酸盐具有丰富的晶体结构。因此,硼酸盐是设计合成新型光学晶体材料的优选体系。基于阴离子基团理论,BO3平面基元具有不对称电子云分布的π 共轭轨道,具有较大的微观极化率,平行排列的BO

碱金属卤素硼酸盐非线性晶体材料研究取得进展

  获得拥有大的非线性光学系数、合适的双折射率以及优良的物理化学性能的紫外非线性光学晶体成为现代科技研究的一个热点。该方向研究的关键是材料晶体结构的设计及优化,特别是在对材料结构-非线性光学性能关系深入理解的前提下,进行有目的的功能基元筛选和组合。因此,探索新型紫外/深紫外非线性光学晶

新疆理化所成功合成同质多晶硼酸盐无机材料

  极性晶体材料具有多种功能性质,比如铁电,热释电和非线性光学等,是光电技术的基础材料,其广泛应用于光电子学、医学等领域。发展新的极性晶体材料的关键是理解其结构-性能的关系。目前,对于极性材料结构-性能的关系研究主要集中于具有相似或相近结构的晶体材料中,而基于同质多晶化合物研究却少有报道。  同质多

关于锂电池的材料石墨的形式分析介绍

  石墨有两种形式:来自矿山的天然石墨和来自石油焦的合成石墨。两种类型都用于锂离子阳极材料,55%倾向于合成和天然石墨的平衡。制造商首选合成石墨,因为它具有优于天然石墨的稠度和纯度。这种情况正在发生变化,通过现代化学纯化工艺和热处理,天然石墨的纯度达到99.9%,而合成当量的纯度达到99.0%。纯化

锂电池的主要材料

碳负极材料实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。锡基负极材料锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。没有商业化产品。氮化物没有商业化产品。合金类包括锡基合金、硅基合金、锗基合金、铝

理化所等在硼酸盐零膨胀材料研究中取得进展

  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过

锂电池碳基材料石墨烯的应用分析

  石墨烯是由碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,被誉为“21世纪的新材料之王”,具有多方面顶尖性能。在新能源电池领域,作为负极材料可应用于锂离子电池、动力电池、超级电容、燃料电池、风电储能装置等领域;作为复合材料,可用于抗静电复合材料、导电复合材料、导热复合材料和高分子复合材料

关于锂电池碳基材料石墨的分析应用

  石墨及其制品因具独特的分子结构、易导电导热性与良好的化学稳定性、耐高温性、耐腐蚀性、耐酸碱性、抗热震性、超高润滑性和可塑性等众多优异物化性能,不仅广泛应用于机械、冶金、石油、轻工、化学等传统工业,更是节能环保、新一代信息技术、生物、高端装备制造、新能源、新材料等战略性新兴产业及核电领域的关键资源

锂电池碳基材料富勒烯的应用分析

  富勒烯的结构与石墨类似,是单质碳被发现的第三种同素异形体,任何存在于球状或椭球状结构中的碳元素组成的物质都可称为富勒烯,最常见的富勒烯是C60,由60个碳原子组成,即20个六元环和12个五元环连接。因富勒烯结构稳定和性质独特,广泛应用在许多领域,如润滑剂、太阳能电池、化妆品及军用激光防护眼镜等。

关于锂电池负极材料纳米材料的介绍

  纳米材料是指在三维空间中至少有一维处于纳米尺寸(1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~1000个原子紧密排列在一起的尺度。  "纳米复合聚氨酯合成革材料的功能化"和"纳米材料在真空绝热板材中的应用"2项合作项目取得较大进展。具有负离子释放功能且释放量可达2000以上

关于锂电池负极材料纳米材料的简介

  纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小

药物分析实验需要哪些仪器

仪器分析:高效液相摄谱仪、气相色谱仪、核磁共振分析仪、质谱仪以及LC-MS GC-MS,理化分析:水分测试仪、原子吸收、显微镜等

关于药物分析降解实验心得

今天我们说说5种条件下的降解实验及深入的讨论降解实验,是否可以参照破坏试验?破坏试验的目的是什么?实验条件的设置要注意什么?等等问题。 降解实验也就是通过高温、酸、碱、氧化等实验条件对其产品进行产物降解,也属于破坏性实验,主要看都能产生哪些杂质。 1、酸降解试 一般选择0.1N的盐酸,在

新疆理化所非线性光学材料卤素硼酸盐研究获进展

  目前,制约紫外激光发展和应用的关键问题在于材料,特别是作为增益介质的紫外/深紫外非线性光学晶体材料,这也是国际光电子材料领域备受关注的一个研究热点。对于紫外波段倍频晶体,由于该波段的激光频率较高,波长较短。为解决此问题,目前国内外一般采用碱金属和碱土金属硼酸盐和卤素硼酸盐作为研究对象。   中

单波长XRF在锂电池负极材料元素分析的应用

  一、 应用概述  锂电池负极材料中的杂质元素直接影响电池的充放电性能,石墨是主流的锂电池负极材料。随着锂离子电池对性能的要求提升,对于负极材料中杂质元素的限值越来越低,常规使用ICP-OES分析负极材料中杂质元素,样品处理复杂和费时费力,滞后于生产质量控制要求,且无法分析痕量的Si、P、S、Cl

关于锂电池碳基材料碳化硅的分析应用

  碳化硅材料由于其较高的弹性模量、适中的密度、较小的热膨胀系数、较高的导热系数、耐热冲击性、高的比刚度、高度的尺寸稳定性等一系列优良的物理性质,受到越来越多的重视,普遍用于陶瓷球轴承、阀门、半导体材料、陀螺、测量仪、航空航天等领域。尤其在半导体领域,国产替代空间巨大,国内企业有望在政策的推动下实现

锂电池隔膜材料的分类

锂电池隔膜材料根据不同的物理、化学特性可以分为:织造膜、非织造膜(无纺布)、微孔膜、复合膜、隔膜纸、碾压膜等几类。

锂电池的负极材料分类

负极材料按照所用活性物质,可分为碳材和非碳材两大类:碳系材料包括石墨材料(天然石墨、人造石墨以及中间相碳位球)与其它碳系(硬碳、软碳和石墨烯)两条路线;非碳系材料可细分为钛基材料、硅基材料、锡基材料、氮化物和金属锂等。

锂电池负极材料的分类

分碳材料和非碳材料两类。人造石墨和天然石墨是当前最主流的两大高纯石墨类碳材料负级,复合型高纯石墨与中间相碳纳米粒子通过掺 杂改性材料和化学物质解决生产加工做成。非碳材料包含硅基、钛基、锡基、氮化合物和金属锂,这种新 型负级至今仍处产品研发或较小规模生产制造环节,并未完成商业化的。

锂电池的正极材料介绍

随着锂离子电池的不断发展,应用领域也在逐渐的扩大,其在正极材料的使用方面已经由单一化向多元化的方向转变,其中包括:橄榄石型磷酸亚铁锂、层状钴酸锂、尖晶石型锰酸锂等等,实现多种材料的并存。在锂电池正极材料当中,最常用的材料有钴酸锂,锰酸锂,磷酸铁锂和三元材料(镍钴锰的聚合物)。1.钴酸锂作为正极材料,

锂电池正极材料的分类

正极材料:可选的正极材料很多,主流产品多采用锂铁磷酸盐。不同的正极材料对照:LiCoO2   3.7 V   140 mAh/gLi2Mn2O   44.0 V   100 mAh/gLiFePO4   3.3 V   100 mAh/gLi2FePO4F   3.6 V   115 mAh/g正极

锂电池的负极材料研究

一般而言,锂电池负极材料由活性物质、粘结剂和添加剂制成糊状胶合剂后,涂抹在铜箔两侧,经过干燥、滚压制得,作用是储存和释放能量,主要影响锂电池的循环性能等指标。负极材料按照所用活性物质,可分为碳材和非碳材两大类:碳系材料包括石墨材料(天然石墨、人造石墨以及中间相碳位球)与其它碳系(硬碳、软碳和石墨烯)