Antpedia LOGO WIKI资讯

锂电材料石墨层间化合物的介绍

石墨晶体是碳原子以共价键结合成的六角环形(碳原子间距为0.142nm)片状体的层叠结构,层面与层面之间距离较大(0.335nm),利用化学或物理的方法在石墨晶体的层面间插入各种分子、原子或离子,而不破坏其二维结构,只是使其层面间距增大,形成一种石墨特有的化合物称之为石墨层间化合物(也称石墨插层化合物)。已经成为近代炭素材料科学的一个分支,其中膨胀石墨(石墨层间化合物一种,见膨胀石墨)及从膨胀石墨进一步加工制成的柔性石墨材料(见柔性石墨)已经形成一定生产规模。......阅读全文

锂电材料石墨层间化合物的介绍

  石墨晶体是碳原子以共价键结合成的六角环形(碳原子间距为0.142nm)片状体的层叠结构,层面与层面之间距离较大(0.335nm),利用化学或物理的方法在石墨晶体的层面间插入各种分子、原子或离子,而不破坏其二维结构,只是使其层面间距增大,形成一种石墨特有的化合物称之为石墨层间化合物(也称石墨插层化

锂电池材料石墨层间化合物的介绍

  所谓石墨层间化合物,就是在插层剂的作用下,化学反应物质侵入石墨层间,并在层间与碳原子键合,形成一种并不破坏石墨层状结构的化合物(Graphite intercalation compounds,简称GICs )。  石墨经过化学处理制成的层间化合物,其性质大大优于石墨,具有耐高温、抗热震、防氧化

关于锂电材料石墨层间化合物的用途介绍

  石墨层间化合物的原料主要是天然鳞片石墨,但石墨层间化合物由于晶体结构上的改变已是完全不同于母体天然鳞片石墨的一种新物质。根据插入物质的性质和插层阶数的不同,石墨层间化合物增加了许多天然鳞片石墨所没有的特性。主要如:高导电性、高效催化性、高吸附性、压缩复原性和自润滑性等。因此石墨层间化合物可以用作

概述锂电材料石墨层间化合物的分类

  石墨层间化合物可以分为:金属—石墨及碱土金属—石墨层间化合物、卤族元素—石墨层间化合物、金属卤化物—石墨层间化合物和三元石墨层间化合物等4类。  (1)金属—石墨层间化合物及碱土金属—石墨层间化合物。碱金属中的K、Rb、Cs的饱和组成为MC8化合物,Li的饱和组成是LiC6,但Na的饱和组成是N

概述锂电材料石墨层间化合物的合成

  石墨层间化合物的合成方法很多,几种有代表性的合成方法介绍如下:  (1)气相恒压反应法。在气相恒压反应法中,石墨试样要和插层的物质分别放在反应管中的不同部位,并保持不同的温度。设石墨的温度为Tg,插层反应物的温度为Ti,使石墨与反应物气体接触并发生反应。Tg一般常比Ti高,以防止反应物从石墨试样

关于锂电材料天然石墨的介绍

  天然石墨是一种较好的负极材料,其理论容量为372Amh/g, 形成LiC6 的结构,可逆容量、充放电效率和工作电压都较高。石墨材料有明显的充、放电平台,且放电平台对锂电压很低,电池输出电压高。天然石墨有无定形石墨和磷片石墨两种。无定形石墨纯度低。可逆比容量仅260mAh.g-1,不可逆比容量在1

简述锂电池的负极材料金属间化合物的应用

  金属间化合物具有与原金属不同的结晶结构和原子结构,能形成新的有序超点阵结构,具有许多与众不同的性质,而有别于目前广泛应用的金属或合金。在近几十年里得到了快速发展,应用领域也在逐渐扩大。  (1)高温应用  金属间化合物由于具有优于高温合金的耐热性、高的比强度、高的比寿命、高的导热性和高的抗氧化性

锂电池的负极材料金属间化合物的发展简史

  自从有冶金技术以来,就已经制备了金属间化合物。Westbrook 在1976-1993年间曾相当详细地叙述了金属间化合物的发展史。他提到,人们是从使用低熔点合金系发展到使用某些金属间化合物的。金属间化合物的应用则是由于金属间化合物具有高的硬度,良好的耐磨性,同时还具有金属性,并可以抛光,因而作为

锂电池的负极材料金属间化合物的制备方法

  自蔓延高温合成  A.G.Merzhanov等发现了自蔓延高温合成(Self-propagatingHigh-temperature Synthesis,SHS)现象。它是利用化学反应产生的反应热自加热和自传导作用合成材料的一种技术。点燃的粉末压坯产生化学反应,其生成热使邻近的粉末温度骤然升高,

锂电池材料石墨的相关介绍

  石墨材料导电性好,结晶度较高具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物,充放电容量可达300mAh.g-1以上,充放电效率在90%以上,不可逆容量低于50mAh.g-1。锂在石墨中脱嵌反应在0~0.25V左右,具有良好的充放电平台,可与提供锂源的正极材料钴酸锂、锰酸锂、镍酸锂