关于锂电导电添加剂材料穴状化合物的配合物介绍
三环穴状配体具有10个结合位点和球形的空腔。另一个具有球形空腔的分子(但是它不是一个穴状配体),能与Li+和Na+复合(更易与Na+复合),但不与K+、Mg2+或Ca2+结合。像这些分子,它们的空腔只能被球形的实体占据,被称为球形配体(spherand)。其它的类型还有杯芳烃(calixarene)。在杯[4]芳烃中,苯酚OH存在大量的氢键,但是随着杯芳烃环增大,空腔增大,氢键会消失。此外杯[4]芳烃存在构象异构体的平衡(锥形互变),有时可以将二者分离出来,如杯[8]芳烃和氮杂杯芳烃口。应当指出的是,在未取代的问位加入取代基,可使杯[4]芳烃结构更固定,也可大大减少杯[8]芳烃的构象可变性。人们已经知道有酰胺桥连的杯[4]芳烃、杯[4]薁和醌桥连的杯[4]芳烃,杯[4]芳烃二铵盐也被制得。对映体纯的杯[4]间苯二酚芳烃衍生物已有报道,水溶性的杯[4]芳烃也已被制备出。此外,还有各种各样的杯[n]冠醚,其中有些是穴状配位体。......阅读全文
概述锂电材料石墨层间化合物的合成
石墨层间化合物的合成方法很多,几种有代表性的合成方法介绍如下: (1)气相恒压反应法。在气相恒压反应法中,石墨试样要和插层的物质分别放在反应管中的不同部位,并保持不同的温度。设石墨的温度为Tg,插层反应物的温度为Ti,使石墨与反应物气体接触并发生反应。Tg一般常比Ti高,以防止反应物从石墨试样
概述锂电材料石墨层间化合物的分类
石墨层间化合物可以分为:金属—石墨及碱土金属—石墨层间化合物、卤族元素—石墨层间化合物、金属卤化物—石墨层间化合物和三元石墨层间化合物等4类。 (1)金属—石墨层间化合物及碱土金属—石墨层间化合物。碱金属中的K、Rb、Cs的饱和组成为MC8化合物,Li的饱和组成是LiC6,但Na的饱和组成是N
配合物的类型介绍
按中心原子分类有单核配合物和多核配合物;按配体分类,常见的有水合配合物、卤合配合物、氨配合物、氰配合物、金属羰基合物等;按成键类型分类有经典配合物(σ 配键)、簇状配合物(金属-金属键)、烯烃等不饱和配体的配合物(π-σ键和π-π反馈键)、铁茂等夹心、穴状、笼状配合物(离域共轭配键)等;按学科类型分
化合物半导体材料的组成介绍
化合物半导体材料是由两种或两种以上元素以确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构等半导体性质的称为化合物半导体材料。
锂电材料添加剂钴的毒理学介绍
经常注射钴制剂或暴露于过量的原始钴环境中,可引起钴中毒。儿童对钴的毒性敏感,应避免使用每千克体重超过1mg的剂量。在缺乏维生素B12和蛋白质以及摄入酒精时,毒性会增加,这在酗酒者中常见。 [12] 钴是中等活泼的金属元素,有二价和三价二种化合价。钴可经消化道和呼吸道进入人体,一般成年人体内含钴
关于三元材料导电涂层的介绍
利用功能涂层对电池导电基材进行表面处理是一项突破性的技术创新,覆碳铝箔/铜箔就是将分散好的纳米导电石墨和碳包覆粒,均匀、细腻地涂覆在铝箔/铜箔上。 它能提供极佳的静态导电性能,收集活性物质的微电流,从而可以大幅度降低正/负极材料和集流之间的接触电阻,并能提高两者之间的附着能力,可减少粘结剂的使
简述锂电池的负极材料金属间化合物的应用
金属间化合物具有与原金属不同的结晶结构和原子结构,能形成新的有序超点阵结构,具有许多与众不同的性质,而有别于目前广泛应用的金属或合金。在近几十年里得到了快速发展,应用领域也在逐渐扩大。 (1)高温应用 金属间化合物由于具有优于高温合金的耐热性、高的比强度、高的比寿命、高的导热性和高的抗氧化性
锂电池的负极材料金属间化合物的发展简史
自从有冶金技术以来,就已经制备了金属间化合物。Westbrook 在1976-1993年间曾相当详细地叙述了金属间化合物的发展史。他提到,人们是从使用低熔点合金系发展到使用某些金属间化合物的。金属间化合物的应用则是由于金属间化合物具有高的硬度,良好的耐磨性,同时还具有金属性,并可以抛光,因而作为
锂电池的负极材料金属间化合物的制备方法
自蔓延高温合成 A.G.Merzhanov等发现了自蔓延高温合成(Self-propagatingHigh-temperature Synthesis,SHS)现象。它是利用化学反应产生的反应热自加热和自传导作用合成材料的一种技术。点燃的粉末压坯产生化学反应,其生成热使邻近的粉末温度骤然升高,
关于锂电池材料锂钻氧化物的介绍
锂钻氧化物(LiCo02)属于a-NaFe02型结构,具有二维层状结构,适宜锂离子的脱嵌。由于其制备工艺较为简便、性能稳定、比容量高、循环性能好,目前商品化的锂离子电池大都采用LiCo02作为正极材料。其合成方法主要有高温固相合成法和低温固相合成法,还有草酸沉淀法、溶胶凝胶法、冷热法、有机混合法
配合物之间的反应介绍
酸碱反应由于水合金属离子离解,生成质子,金属离子在水溶液中通常显酸性,例如:K是酸离解常数,可用来衡量水合金属离子的酸性大小,它与金属离子电荷、半径和电子构型有关。一般地说,金属离子电荷高、半径小,电子构型有利于极化作用时,酸性就大;反之就小。这种离解反应还可继续进行,并伴随着聚合,生成羟联或氧联的
关于配合物滴定法的操作流程介绍
配合物滴定法是化学分析方法中的一种重要的分析方法,它是利用离子在配合状态和游离状态与配合物有定量的配位特性来对已知成分而未知量的元素进行定量分析。 1、配合物滴定法的操作流程: 将配合剂或破配合剂作为需要定量的滴加成分往待分析液中滴加,让其与待分析液中的金属离子配合反应,当金属离子配合或游离
锂电材料锂镍氧化物的介绍
锂镍氧化物(LiNi02)为岩盐型结构化合物,具有良好的高温稳定性。由于自放电率低、对电解液的要求低、不污染环境、资源相对丰富且价格适宜,是一种很有希望代替锂钻氧化物的正极材料。目前LiNi02主要通过Ni(NO3)2、N i(OH)2、NiCO3、NiOOH和LiOH、LiN03及LiC03经
锂电池的负极材料金属间化合物的主要特点
这类化合物虽然也可以用一个 “分子式”表示,但它和普通的化合物相比,具有若干不同的特点: ①大部分金属间化合物不符合原子价规则。例如,Cu-Zn合金系中有三种金属间化合物CuZn、Cu5Zn8和CuZn3。显然,这三种化合物都不符合化合价的规则。 ②大部分金属间化合物的成分并不确定,也就是说
锂电池的负极材料金属间化合物的发展现状
纵观国内外金属间化合物结构材料领域研究的成果,其表征主要有一方面:新型材料的发展方面,和有序金属间化合物物理金属学理论方面。 13年来,我国金属间化合物结构材料研究取得了很大的成绩,在几个重点材料研究领域可以说达到与国外同步的水平,培养了一批高级研究人才,但金属间化合物理论研究方面的建树不太突
化合物半导体材料的材料优势
化合物半导体集成电路的主要特征是超高速、低功耗、多功能、抗辐射。以GaAs为例,通过比较可得:1.化合物半导体材料具有很高的电子迁移率和电子漂移速度,因此,可以做到更高的工作频率和更快的工作速度。2.肖特基势垒特性优越,容易实现良好的栅控特性的MES结构。3.本征电阻率高,为半绝缘衬底。电路工艺中便
关于锂电材料天然石墨的介绍
天然石墨是一种较好的负极材料,其理论容量为372Amh/g, 形成LiC6 的结构,可逆容量、充放电效率和工作电压都较高。石墨材料有明显的充、放电平台,且放电平台对锂电压很低,电池输出电压高。天然石墨有无定形石墨和磷片石墨两种。无定形石墨纯度低。可逆比容量仅260mAh.g-1,不可逆比容量在1
锂电材料锡基负极材料锡氧化物的介绍
锡的氧化物包括氧化亚锡、氧化锡和其混合物,都具有一定的可逆偖锂能力,偖锂能力比石墨材料高,可达500mAh/g以上,但首次不可逆容量也较大。SnO/SnO2用作负极具有比容量高、放电电位比较低(在0.4~0.6V vs Li/Li+附近)的优点。但其首次不可逆容量损失大、容量衰减较快,放电电位曲
关于配合物滴定法的基本信息介绍
配合物滴定法是化学分析方法中的一种重要的分析方法,它是利用离子在配合状态和游离状态与配合物有定量的配位特性来对已知成分而未知量的元素进行定量分析。 1、配合物滴定法的操作流程: 将配合剂或破配合剂作为需要定量的滴加成分往待分析液中滴加,让其与待分析液中的金属离子配合反应,当金属离子配合或游离
树穴有机覆盖物
树穴有机覆盖物生产厂家---山东一匡,厂家直销,规格齐全,价格合理,支持全国发货! 树穴有机覆盖物是近几年来国内外迅速发展的一种新型的城市绿化地表覆盖材料,使用有机覆盖物覆盖裸露土壤逐渐开始成为一种景观生态环保趋势。有机覆盖物主要应用于城市新建绿地栽植的树木及庭园花圃灌木周围的覆盖。山东一
什么是配合物?螯合物是配合物吗?
螯合物是(旧称内络盐)是由中心离子和多齿配体结合而成的具有环状结构的配合物。螯合物是配合物的一种,在螯合物的结构中,一定有一个或多个多齿配体提供多对电子与中心体形成配位键。“螯”指螃蟹的大钳,此名称比喻多齿配体像螃蟹一样用两只大钳紧紧夹住中心体。螯合物通常比一般配合物要稳定。从配合物的研究可知,具有
关于锂电池的正极材料锂锰氧化物的介绍
我国锰资源储量丰富,而且锰无毒,污染小,因此层状结构的LiMnO2和尖晶石型的LiMn2O4都成为了正极材料研究的热点。 锂锰氧化物主要有层状LiMnO2和尖晶石型LiMn2O4两类。LiMnO2属于正交晶系,岩盐结构,氧原子分布为扭变四方密堆结构,其空间点群为Pmnm,理论比容量达到286m
锂电池导电涂层的性能介绍
1. 接触电阻下降40%2. 胶黏剂用量降低50%3. 同倍率下,电池电压平台提升20%4. 材料与集流体附着力提高30%,经过长期循环不会有脱层现象
锂电池导电涂层性能介绍
导电涂层在锂电池中能够有效提高极片附着力,减少粘结剂的使用量,同时对于电池的电性能也有显著提升。国外的大公司产品就不介绍了,介绍一下国内唯一一家在市场上推广,并拥有自主知识产权的产品——WX112,由中兴新旗下的上海中兴派能能源科技有限公司研发和生产,从拿到的样品看,满涂、留边、留间隙等技术要求都可
锂电池导电涂层特性介绍
导电涂层也称为预涂层,在锂电池行业内通常指涂覆于正极集流体——铝箔表面的一层导电涂层,涂覆导电涂层的铝箔称为预涂层铝箔或简称涂层铝箔。导电涂层在锂电池中能有效提高极片附着力,减少粘结剂的使用量,同时对于电池的电性能也有显著提升。其最早在电池中的实验可以追溯到70年代,而随着新能源行业的发展,特别是磷
关于氙化合物的基本介绍
氙在稀有气体元素中是化合物最多的。 1962年,巴特列在研究无机氟化物时,发现强氧化性的六氟化铂可将O2氧化为O2+。由于O2到O2+的电离能(1165kJ/mol)与Xe到Xe+的电离能相差不大(1170kJ/mol),因此他尝试用PtF6氧化Xe。结果反应得到了橙黄色的固体。巴特利特认为它
锂电池的负极材料金属间化合物的机械合金化制备
机械合金化(Mechanical Alloying,MA)是J.S. Banjamin提出的一种制备合金粉末的高能球磨技术,通常为干式球磨。磨球和粉末间的相互碰撞引起塑性粉末的压扁和加工硬化,导致粒子重叠,表面接触。发生冷焊。形成由各组分组成的多层复合粉末粒子,同时加工硬化层及复合粒子发生断裂。
锂电池材料硫化物合成的介绍
无机硫化物通常可通过以下方法合成:(注:K为国际温度单位开尔文) 1、单质直接化合,例如: C + 2S CS2 2、硫酸盐或高价硫化物的还原,例如: Na2SO4 + 4C→ Na2S + 4CO 1373K In2S3 + 2 → In2S + 2H2S 3、溶液中或高温的复分解
锂电池材料氟化物的相关介绍
氟化物指含氟的有机或无机化合物。氟可与除He、Ne和Ar外的所有元素形成二元化合物。从致命毒素沙林到药品依法韦仑,从难溶的氟化钙到反应性很强的四氟化硫都属于氟化物的范畴。 2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,氟化物(饮用水中添加的无机物)3类致癌物
关于锂电池负极材料纳米材料的介绍
纳米材料是指在三维空间中至少有一维处于纳米尺寸(1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~1000个原子紧密排列在一起的尺度。 "纳米复合聚氨酯合成革材料的功能化"和"纳米材料在真空绝热板材中的应用"2项合作项目取得较大进展。具有负离子释放功能且释放量可达2000以上