简述锂电材料三氧化二铝变体的内容
Al2O3有多种变体,常见的是α,γ型都是白色晶体。 自然界中的刚玉是α型属于六方最密堆积,熔点,硬度高,不溶于酸碱耐腐蚀,绝缘性好。 将氢氧化铝与偏氢氧化铝或铝铵矾在723K共热可得γ型,不溶于水,但吸水性很强,有强吸附能力与催化活性。 β形有离子传导能力,允许Na+通过。......阅读全文
简述锂电材料纳米氧化锌的广泛应用
橡胶工业 比表面积大,活性更强,可以作为硫化活性剂等功能性添加剂,提高橡胶制品的光洁性、耐磨性、机械强度和抗老化性能性能指标,减少普通氧化锌的使用量,延长使用寿命; 陶瓷工业 作为 乳瓷 釉料和助熔剂,可降低烧结温度、提高光泽度和柔韧性,有着优异的性能; 电力电子 纳米氧化锌压敏电阻的
简述纳米二氧化锆的内容
纳米二氧化锆为无毒无味白色粉末,因烧结温度及添加氧化钇等稳定物含量的不同可分为单斜相、四方相和立方相三种,溶于硫酸、氢氟酸。纳米氧化锆分散性好,具有良好的热化学稳定性、高温导电性和较高的强度和韧性,机械、热学、电学、光学性质良好,纳米氧化锆粒径小、稳定性强,具有耐酸、耐碱、耐腐蚀、耐高温的性能。
简述三氧化二锰粉体的制备
取一定量的天然二氧化锰矿,烘干,粉磨至全部通过100目筛,在700℃的转炉中热分解焙烧1.5 h,使天然二氧化锰矿粉中 MnO2 转化为 Mn2O3,取出粉体冷却到常温,充分研碎即得Mn2O3粉体。
简述三氧化二硼的结构性质
玻璃状氧化硼(g-B2O3)很可能是一种由许多三角形BO3单元通过共用氧原子部分有序连接而成的网络结构,其中以硼氧相间的六元环B3O3占优势。该六元环中,硼原子为三配位,氧原子为二配位。该玻璃体在325-450 °C时软化,其密度随受热情况而有一个变化范围。加热时,玻璃体氧化硼结构中的无序度增加
简述三氧化二镍的理化性质
一、基本信息 化学式:Ni2O3 分子量:165.42 CAS号:1314-06-3 EINECS号:215-217-8 二、理化性质 密度:4.84g/cm3 外观:灰黑色粉末 溶解性:不溶于水
简述锂电材料纳米氧化锌的基本原理
所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某
简述锂电池材料纳米氧化铝的应用范围
透明陶瓷:高压钠灯灯管、EP-ROM窗口。 化妆品填料。 单晶、红宝石、蓝宝石、白宝石、钇铝石榴石。 高强度氧化铝陶瓷、C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶、炉管。 精密抛光材料、玻璃制品、金属制品、半导体材料、塑料、磁带、打磨带。 涂料、橡胶、塑料耐磨增强材料、高级耐水材
关于三氧化二铝在制造强化玻璃方面的应用
刚玉粉硬度大可用作磨料,抛光粉,高温烧结的氧化铝,称人造刚玉或人造宝石,可制机械轴承或钟表中的钻石。氧化铝也用作高温耐火材料,制耐火砖、坩埚、瓷器、人造宝石等,氧化铝也是炼铝的原料。煅烧氢氧化铝可制得γ-Al2O3。γ-Al2O3具有强吸附力和催化活性,可做吸附剂和催化剂。刚玉主要成分α-Al2
简述锂电池材料二硫化钼的用途
二硫化钼是重要的固体润滑剂,特别适用于高温高压下。它还有抗磁性,可用作线性光电导体和显示P型或N型导电性能的半导体,具有整流和换能的作用。二硫化钼还可用作复杂烃类脱氢的催化剂。 它也被誉为“高级固体润滑油王”。二硫化钼是由天然钼精矿粉经化学提纯后改变分子结构而制成的固体粉剂。本品色黑稍带银灰色
简述锂电材料二硫化钼的化学反应
二硫化钼在空气中是稳定的,只能被侵蚀性试剂侵蚀。加热时与氧气发生反应,形成三氧化钼: 2 MoS2+ 7 O2→ 2 MoO3+ 4 SO2 氯气在高温下与二硫化钼反应,形成五氯化钼: 2 MoS2+ 7 Cl2→ 2 MoCl5+ 2 S2Cl2
概述锂电材料纳米二氧化钛的功能
纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米TiO2还具有很高的化学稳定性、热稳定性、超亲水性、非迁移性,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中、锂电池中。
锂电材料纳米二氧化钛的应用特性
1、对入射可见光基本无散射作用,具有很强的屏蔽紫外线能力和优异的透明性,作为一种新型材料已广泛应用于化妆品、涂料、油漆等产品中。 2、用于塑料、橡胶和功能纤维产品,它能提高产品的抗老化能力、抗粉化能力、耐候性和产品的强度,同时保持产品的颜色光泽,延长产品的使用期 3、用于油墨、涂料、纺织,能
锂电材料纳米二氧化钛的作用机理
气相法纳米二氧化钛具有大的比表面积,表面原子数、表面能和表面张力随着粒径的下降急剧增加,小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等导致纳米微粒的热、磁、光、敏感特性和表面稳定性等不同于常规粒子。由于TiO2电子结构所具有的特点,使其受光时生成化学活泼性很强的超氧化物阴离子自由基和氢氧
简述三氧化二砷的毒理学数据
1、急性毒性 LD50:10mg/kg(大鼠经口);20mg/kg(小鼠经口) 2、亚急性与慢性毒性 大鼠摄取本品150mg/(kg·d),共6.5个月,对动物生长发育有轻度影响,肝肾重量明显增加,但肝肾功能及血常规均正常;30mg/kg以下,动物各主要脏器无病理改变。 3、致突变性
简述三氧化二硼的合成方法介绍
1、常压法 将硼酸送入加热釜内,升温,硼酸徐徐脱水。当温度升到107.5℃时变为偏硼酸(HBO2),升温到150~160℃时转变为四硼酸(H2B4O7),650℃以上则熔体产生大量泡沫,最终将温度保持在800~1000℃,灼烧脱水到物料呈红色并不再鼓泡为止。熔料相对密度为1.52。这时开启抽丝
简述三氧化二铁的物理性质
红至红棕色粉末。无臭。不溶于水、有机酸和有机溶剂。溶于无机酸。有α-型(正磁性)及γ-型(反磁性)两种类型。干法生产的产品一般细度在1μm以下。对光、热、空气稳定。对酸、碱较稳定。着色力强。折射率3.042。熔点1550℃,约于1565℃分解。
三氧化二铝红外光谱分析各峰归宿
三氧化二铝 是金属氧化物,在中红外范围没有特征峰,如果你想测它的红外光谱,需要用 远红外光谱仪。
简述锂电池材料二硫化钼的日常防护
防护措施 工程控制:密闭操作,局部排风。 呼吸系统防护:空气中粉尘浓度超标时,建议佩戴自吸过滤式防尘口罩。紧急事态抢救或撤离时,应该佩戴空气呼吸器。 眼睛防护: 戴化学安全防护眼镜。 身体防护:穿防毒物渗透工作服。 手防护:戴乳胶手套。 其它:注意个人清洁卫生。 急救措施 吸入:
简述锂电材料二硫化钼的催化作用
MoS2用作石化,例如加氢脱硫中脱硫的辅助催化剂。MoS2催化剂的有效性通过添加少量的钴或者镍得到增强。这些硫化物的紧密混合物是负载在氧化铝上。这种催化剂是通过用下列物质处理钼酸盐/钴或镍浸渍氧化铝原位生成的H2S或者等效的试剂。催化作用不发生在微晶的规则片状区域,而是发生在这些平面的边缘。
简述锂电池材料碳酸二甲酯的介绍
分子式:C3H6O3 (dimethyl carbonate,DMC),是一种无毒、环保功能优异、用途广泛的化工质料,它是一种重要的有机组成中间体,分子结构中含有羰基、甲基和甲氧基等官能团,具有多种反响功能,在生产中具有使用安全、方便、污染少、简单运输等特色。因为碳酸二甲酯毒性较小,是一种具有
三氧化氯的基本内容
化学式:ClO3、Cl2O6 名称:三氧化氯、六氧化二氯 化合价:氯+5、+7价,氧-2价 性质:1、与ClO2、HCl、Cl2、HClO、HClO2等氯的其他价态的化合物发生归中反应 2、强氧化性 3、自身氧化还原反应(歧化反应) 利用:三氧化氯泡沫消毒剂
锂电材料纳米二氧化钛的其它功能介绍
纳米二氧化钛对某些塑料、氟里昂及表面活性剂SDBS也具有很好的降解效果。 还有人发现,TiO2对有害气体也具有吸收功能,如含TiO2的烯烃聚合物纤维涂在含磷酸钙的陶瓷上可持续长期地吸收不同酸碱性气体。 鉴于以上功能,纳米二氧化钛具有非常广阔的前景。对它的研究和利用会给人们的生活带来巨大改变。
锂电池材料镍钴铝酸锂的介绍
镍钴铝酸锂是具有六方层状结构(α-NaFeO2型层状结构)的锂金属氧化物,属于R-3M空间点群。其电化学性能与钴酸锂和镍钴锰酸锂类似。成品镍钴锰酸锂为一次单晶的二次团聚体。是理想的绿色环保动力锂离子电池材料。是国家重点推广新能源材料。
简述锂电池控制电解液材料氧化镁的分类
分类:分轻质氧化镁和重质氧化镁两种。轻质体积疏松,为白色无定形粉末。无臭无味无毒。密度3.58g/cm3。难溶于纯水及有机溶剂,在水中溶解度因二氧化碳的存在而增大。能溶于酸、铵盐溶液。经高温灼烧转化为结晶体。遇空气中的二氧化碳生成碳酸镁复盐。重质体积紧密,为白色或米黄色粉末。与水易化合,露置空气
简述锂电池材料纳米氧化铝的化学性质
不同的制备方法及工艺条件可获得不同结构的纳米氧化铝:χ、β、η和γ型氧化铝,其特点是多孔性,高分散、高活性,属活性氧化铝;κ、δ、θ型氧化铝;α-Al2O3,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;β-Al2O3、γ-Al2O3的比表面较大,孔隙率高、耐热性强,成型性
关于三氧化二铁的磁性材料的应用介绍
磁性氧化铁粒子由于其特殊的超顺磁性,在巨磁电阻、磁性液体和磁记录、软磁、永磁、磁致冷、巨磁阻抗材料以及磁光器件、磁探测器等方面具有广阔的应用前景。录像磁带一般使用针状铁或氧化铁磁性超微粒,而纳米氧化铁是新型磁记录材料。软磁铁氧体在无线电通讯、广播电视、自动控制、宇宙航行、雷达导航、测量仪表、计算
微电子所新型三氧化二铝表面钝化研究获进展
日前,中科院微电子研究所在新型Al2O3表面钝化研究上取得突出进展。 良好的表面钝化对于提升晶体硅太阳能电池的开路电压十分重要,传统晶体硅电池常用等离子体增强化学气相沉积法沉积SiNx:H薄膜,除了能够降低反射率以外,还对Si电池的表面进行了较好的钝化。然而传统SiNx:H薄膜
简述钛酸锂电池模组的内容
钛酸锂电池产品基于石墨烯技术成果,在性能方面结合了超级电容高功率密度性能和锂电池的高能量密度特性,更适合高功率、高能量、宽温度等应用工况,相比磷酸铁锂电池,具有高倍率(最大10C),长寿命,宽工作温度范围等特点。该产品可广泛应用在电力系统、新能源车、轨道交通等领域。
简述锂电池产业链的内容
锂电池上游主要为包括锂、镍、钴资源的加工以及正极材料、负极材料、隔膜、电解液、铝塑膜等材料;中游为电芯的制造、装备、检测以及电池组装等环节,下游应用包括新能源汽车、消费电子、电动工具、电动自行车、储能的行业。
简述锂电池正极混料的内容
1、原料的预处理 1)钴酸锂:脱水。一般用120°C常压烘烤2小时左右。 2)导电剂:脱水。一般用200°C常压烘烤2小时左右。 3)粘合剂:脱水。一般用120-140°C常压烘烤2小时左右,烘烤温度视分子量的大小决定。 4)NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。