关于高分子增稠剂的介绍
(1)无机增稠剂 无机增稠剂是一类吸水膨胀而形成触变性的凝胶矿物。主要有膨润土、凹凸棒土、硅酸铝等,其中膨润土最为常用。现在人们正在研究用无机物和其它物质复合合成增稠剂,如 M Chtourou 等人正在研究用铵盐的有机衍生物和类属蒙脱石的突尼斯黏土合成增稠剂,并且有了很大的进展。 (2)纤维素类增稠剂 纤维素类增稠剂的使用历史较长,品种也很多,有甲基纤维素、羧甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素等,广泛应用于各种领域。纤维素类增稠剂通过水合膨胀的长链而增稠,其体系表现明显的假塑性流变形态。 (3)聚丙烯酸类增稠剂 聚丙烯酸类增稠剂属阴离子型增稠剂,是目前应用比较广泛的合成增稠剂,尤其在印染方面。一般由 3 种或更多的单体聚合而成,主单体一般为羧酸类单体,如丙烯酸、马来酸或马来酸酐、甲基丙烯酸等;第二单体一般为丙烯酸酯或苯乙烯;第三单体是具有交联作用的单体,例如N,N-亚甲基双丙烯酰胺、双丙烯酸丁二酯或邻苯二......阅读全文
关于高分子增稠剂的介绍
(1)无机增稠剂 无机增稠剂是一类吸水膨胀而形成触变性的凝胶矿物。主要有膨润土、凹凸棒土、硅酸铝等,其中膨润土最为常用。现在人们正在研究用无机物和其它物质复合合成增稠剂,如 M Chtourou 等人正在研究用铵盐的有机衍生物和类属蒙脱石的突尼斯黏土合成增稠剂,并且有了很大的进展。 (2)纤
关于增稠剂的未来展望的介绍
增稠剂属于多品种、多功能的材料。目前已经开发出纤维素增稠剂、聚丙烯酸酯增稠剂、碱溶性丙烯酸增稠剂、聚氨酯增稠剂等系列产品。它们在成糊性、渗透性、透网性、流变性、触变性、曳丝性、抱水性、混悬性等方面性能突出,有着广泛的应用。最近的开发方向是液体缔合型无溶剂增稠剂,另外,对聚丙烯酸增稠剂添加某些物质
关于低分子增稠剂的基本介绍
(1)无机盐类增稠剂 用无机盐(如氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等)做增稠剂的体系,一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。 (2)脂肪醇、脂肪酸类增稠剂 脂肪醇、脂肪酸(如月桂醇、肉豆蔻醇、癸醇
关于增稠剂的基本信息介绍
又称胶凝剂,是一种能增加胶乳、液体黏度的物质,用于食品时又称糊料。增稠剂可以提高物系黏度,使物系保持均匀稳定的悬浮状态或乳浊状态,或形成凝胶;大多数增稠剂兼具乳化作用。可分为天然和合成两大类。天然品大多数从含多糖类黏性物质的植物和海藻类制取,如淀粉、阿拉伯胶、果胶、琼脂、明胶、海藻胶、角叉胶、糊
关于增稠剂的增稠机理介绍
1、无机类增稠机理 用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。 [4] 但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的
关于增稠剂的简介
增稠剂是近年来迅速发展起来的一类新型功能高分子材料,主要用于提高产品的黏度或稠度,具有用量小、增稠明显、使用方便等特点,被广泛地应用于制药、印染、化妆品、食品添加剂、采油、造纸、皮革加工等行业中。 工业增稠剂起源于20世纪,1953年,Coodrich公司首先将第一种完全由人工合成的增稠剂——
关于增稠剂在在食品加工中的作用介绍
迄今世界上用于食品工业的食品增稠剂已有60余种 [2] ,主要用来改善和稳定食品的物理性质或形态、增加食品的黏度、赋予食品黏滑适口的口感,并起到增稠、稳定、均质、乳化凝胶、掩蔽、矫味、增香、增甜等作用。增稠剂种类很多,分天然和化学合成两类。天然增稠剂主要从动植物中获取,化学合成的增稠剂有CMC-
什么是增稠剂?
增稠剂可提高食品的黏稠度或形成凝胶,从而改变食品的物理性状,赋予食品黏润、适宜的口感,并兼有乳化、稳定或使呈悬浮状态的作用,我国目前批准使用的增稠剂品种有39种。增稠剂都是亲水性高分子化合物,也称水溶胶。按其来源可分为天然和化学合成(包括半合成)两大类。
什么是增稠剂?
增稠剂可提高食品的黏稠度或形成凝胶,从而改变食品的物理性状,赋予食品黏润、适宜的口感,并兼有乳化、稳定或使呈悬浮状态的作用,我国目前批准使用的增稠剂品种有39种。增稠剂都是亲水性高分子化合物,也称水溶胶。按其来源可分为天然和化学合成(包括半合成)两大类。
关于高分子溶液的形成的介绍
高分子化合物在形成溶液时,与低分子量的物质明显不同的是要经过溶胀(swelling)的过程,即溶剂分子慢慢进入卷曲成团的高分子化合物分子链空隙中去,导致高分子化合物舒展开来,体积成倍甚至数十倍的增长。不少高分子化合物与水分子有很强的亲和力,分子周围形成一层水合膜,这是高分子化合物溶液具有稳定性的
概述增稠剂的制备方法
增稠剂的品种繁多,其制备方法因品种不同而有所差异。一般情况下,低分子增稠剂的制备比较简单,例如低分子无机增稠剂与表面活性剂配合增稠;醚类/氧化胺增稠剂通过氧化反应制得;酯类增稠剂可通过直接酯化得到等。而高分子增稠剂占据的市场比例较大,除无机高分子增稠剂与天然高分子增稠剂外,大多是通过乳液聚合、反
脱模剂增稠剂
水性增稠剂、切削液增稠剂、拉伸油增稠剂、水基切削液增稠剂、金属加工液增稠剂、清洁剂增稠剂、水性建筑材料增稠剂、水性粘合剂增稠剂、水性色浆增稠剂 脱模剂增稠剂是一种阴离子疏水改性聚氨酯流变增稠剂,适用于脱膜剂、切削液、拉伸油、全合成切削液、水基切削液、金属加工液体系的增稠,具有突出的增稠效果以及
关于高分子聚合物的相关介绍
高分子聚合物指由键重复连接而成的高分子量(通常可达10~106)化合物。包括晶态结构、非晶态结构、取向态结构以及织态结构。 人类利用天然聚合物的历史久远,直到19世纪中叶才跨入对天然聚合物的化学改性工作,1839年C.Goodyear发现了橡胶的硫化反应,从而使天然橡胶变为实用的工程材料的研究
关于高分子复合材料的应用介绍
高分子材料是由相对分子质量较高的化合物构成的材料。我们接触的很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人工合成的化学纤维、塑料和橡胶等也是如此。一般称在生活中大量采用的,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。高分子是生命存在的
关于高分子聚合物的产生的介绍
天然聚合物多从自然植物经物理或化学方法制取,合成聚合物由低分子单体通过聚合反应制得。聚合方法通常有本体(熔融)聚合、溶液聚合、乳液聚合和悬浮聚合等,依据对聚合物的使用性能要求可对不同的方法进行选择,如带官能团的单体聚合常采用溶液或熔融聚合法。研究聚合过程的反应工程学科分支称为聚合反应工程学。聚合
概述增稠剂的不同种类
能够作为增稠剂的物质很多,最常使用的增稠剂约有40余种。 现行国标《GB 2760-2014食品安全国家标准 食品添加剂使用标准》中共收录的增稠剂有55种,其分类有以下多种方式。 按增稠剂的化学结构和组成分类,可将其分为多糖和多肽两大类。其中多糖类增稠剂包括淀粉类、纤维素类、果胶类、海藻酸类等
关于高分子絮凝剂的区别方法介绍
助凝剂 助凝剂也叫混凝剂,助凝剂分为聚合氯化铝、硫酸亚铁等、混凝剂是单一用絮凝剂无法处理的情况下,用助凝剂先将污水里的悬浮物用助凝剂把污水的cod先助凝处理,然后再加入絮凝剂效果更加、其优点可以降低污水处理的中和成本。 技术指标 高分子絮凝剂简称聚丙烯酰胺,絮凝剂三号,英文代号(PAM)。
关于高分子聚合物的发展简史介绍
1870年J.W.Hyatt用樟脑增塑硝化纤维素,使硝化纤维塑料实现了工业化。1907年L.Baekeland报道了合成第一个热固性酚醛树脂,并在20世纪20年代实现了工业化,这是第一个合成塑料产品。1920年H.Standinger提出了聚合物是由结构单元通过普通的共价键彼此连接而成的长链分子
食用添加剂增稠剂
食品增稠剂:通常指能溶解于水中,并在一定条件下充分水化形成黏稠、滑腻溶液的大分子物质,又称食品胶。 常用的增稠剂有明胶,酪蛋白酸钠,阿拉伯胶,罗望子多糖胶,田菁胶,琼脂,海藻酸钠(褐藻酸钠、藻胶),卡拉胶 ,果胶,黄原胶,β-环状糊精,羧甲基纤维素钠(CMC-Na),淀粉磷酸酯钠(磷酸淀粉钠),羧甲
关于合成高分子化合物的介绍
1、加聚反应制得的高分子化合物 加聚反应制得的高分子化合物,其命名习惯上是在原料名称之前,加一个“聚”字。如,氯乙烯的聚合物,称为聚氯乙烯;四氟乙烯的聚合物,称为聚四氟乙烯;甲基丙烯酸甲酯的聚合物,称为聚甲基丙烯酸甲酯。 2、缩聚反应制得的高分子化合物 缩聚反应制得的高分子化合物,其命名习
关于高分子化合物的应用介绍
高分子的应用极为广泛,遍及人们的衣、食、住、行,国民经济各部门和尖端技术。功能高分子的问世,使合成高分子的应用发展到更精细、更高级的水平,不仅对促进工农业生产和尖端技术,而且对探索生命的奥秘、攻克癌症和治疗遗传性疾病都起着重要推动作用。据推算,21世纪地球上人口将超过100亿,届时粮食、能源、环
关于高分子化合物的结构介绍
高分子的分子结构可以分为两种基本类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物。第二种是体型结构,具有这种结构的高分子化合物称为体型高分子化合物。此外,有些高分子是带有支链的,称为支链高分子,也属于线型结构范畴。有些高分子虽然分子链间有交联,但交联较少,这种结构称为网状结
关于高分子聚合物的聚集态结构介绍
聚集态结构是指高聚物分子链之间的几何排列和堆砌结构,结构规整或链次价力较强的聚合物容易结晶,例如,高密度聚乙烯、全同聚丙烯和聚酰胺等。结晶聚合物中往往存在一定的无定型区,即使是结晶度很高的聚合物也存在晶体缺陷,熔融温度是结晶聚合物使用的上限温度。结构不规整或链间次价力较弱的聚合物(如聚氯乙烯、聚
关于高分子化合物的特点介绍
高分子同低分子比较,具有如下几个特点: 1、从相对分子质量和组成上看,高分子的相对分子质量很大,具有“多分散性”。大多数高分子都是由一种或几种单体聚合而成。 2、从分子结构上看,高分子的分子结构基本上只有两种,一种是线型结构,另一种是体型结构。线型结构的特征是分子中的原子以共价键互相连接成一
关于超声波高分子材料均质机应用的介绍
超声波均质机早应用应当是用超声来粉碎细胞壁,以释放出其内容物。低强度超声可以促进生化反应过程,如用超声照射液体营养基可增加藻类细胞的生长速度,从而使这些细胞产生蛋白质的量增加3倍。 超声波纳米级搅拌器由超声波振动部件和超声波专用驱动电源和反应釜三大部分构成。超声波振动部件主要包括超声波换能器、
关于高分子锂离子电池的安全问题介绍
所有的锂离子电池,无论是以前的,还是这些年的,包括聚合物锂离子电池、磷酸铁锂电池等等,都非常害怕电池内部短路、电池外部短路、过充这些情况。 因为,锂的化学性质非常活跃,很容易燃烧,当电池放电、充电时,电池内部会持续升温,活化过程中所产生的气体膨胀,电池内压加大,压力达到一定程度,如外壳有伤痕,
关于高分子化合物的加聚反应的介绍
加聚反应是指由一种或两种以上单体化合成高聚物的反应,在反应过程中没有低分子物质生成,生成的高聚物与原料物质具有相同的化学组成,其相对分子质量为原料相对分子质量的整数倍,仅由一种单体发生的加聚反应称为均聚反应。例如,氯乙烯合成聚氯乙烯: 由两种以上单体共同聚合称为共聚反应。例如,苯乙烯与甲基丙烯
高分子溶液理论的基本介绍
比较重要的高分子溶液理论有以下几种: 弗洛里-哈金斯晶格理论 尺寸和形状都相同的小分子混合物与理想溶液的偏离常归因于混合热的存在;但是溶液性质的非理想性也可由于分子尺寸有较大差别所造成。对高分子溶液而言,一个长链高分子的分子体积远大于溶剂分子体积,而且链段间的键接使链段在晶格上的排布有一定的相
常用的食品漂白剂、膨松剂和增稠剂
漂白剂 抑制或破坏食品中的各种发色因素,使其褪色或免于色变。常用的漂白剂有氧化型和还原型两类。氧化型的有过氧化苯甲酰,H2O2、CaClO3 等,还原型的有亚硫酸及其盐类。 亚硫酸盐的漂白作用机理有: (1)使有色物质还原为无色物质,而使食品褪色; (2)使氧化酶失活而防止酶促褐变;
关于高分子化合物的加聚反应的特点介绍
(1)加聚反应所用的单体是带有双键或叁键的不饱和键的化合物。例如,乙烯、丙烯、氯乙烯、苯乙烯、丙烯腈、甲基丙烯酸甲酯等,者是常用的重要单体,加聚反应发生在不饱和键上。 (2)加聚反应是通过一连串的单体分子间的互相加成反应来完成的: 而且反应一旦发生,便以连锁反应方式很快进行下去得到高分子化合