X射线晶体衍射学的概述
X射线望远镜光学系统一般采用沃尔特Ⅰ型──抛物面焦点与双曲面的后焦点重合的同轴光学系统。其焦平面通过双曲面的前焦点。按照制作工艺来划分,X射线望远镜的研制已经历三代。第一代镜面是铝制的,效率为1%,1963年用这种望远镜拍摄到分辨率为几角分的照片,可看出太阳上存在着X射线发射区。第二代镜面是在光学抛光的不锈钢模上电铸镍,它的效率在8.3埃处约为20%。1965年,曾用它摄得太阳像,分辨率为30,发现大面积弱发射区。第三代镜面已在天空实验室的望远镜装置上使用,一个是利用熔石英做镜面材料,另一个是由两套同轴共焦系统进行套迭组成。镜坯采用铝材,表面镀镍磷合金,分辨率可达1~2,能观测到许多日冕亮点。......阅读全文
X射线晶体衍射学的概述
X射线望远镜光学系统一般采用沃尔特Ⅰ型──抛物面焦点与双曲面的后焦点重合的同轴光学系统。其焦平面通过双曲面的前焦点。按照制作工艺来划分,X射线望远镜的研制已经历三代。第一代镜面是铝制的,效率为1%,1963年用这种望远镜拍摄到分辨率为几角分的照片,可看出太阳上存在着X射线发射区。第二代镜面是在光
X射线晶体衍射学的理论依据
对于X 射线衍射理论的研究, 目前有两种理论:运动学和动力学衍射理论 [2] 。 运动学衍射理论 达尔文(Darwin)的理论称为X 射线衍射运动学理论。该理论把衍射现象作为三维Frannhofer 衍射问题来处理, 认为晶体的每个体积元的散射与其它体积元的散射无关, 而且散射线通过晶体时不
X射线晶体衍射学的发现与历史
1912 年在人类的科学史上是一个重要的年份、一个里程碑式的年份,因为德国科学家劳厄(Maxvon Laue, 1879-1960)在这一年发现了X 射线晶体衍射现象,并开创了X 射线衍射物理学的研究。紧接着,英国科学家小布拉格(William LawrenceBragg,1890-1971)在
X射线单晶体衍射仪
X射线单晶体衍射仪(X-ray single crystal diffractometer)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出
x射线单晶体衍射仪
X射线单晶体衍射仪X射线单晶体衍射仪(X-ray single crystal diffractometer,简写为XRD)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解
X射线晶体定向衍射历史介绍
射线晶体衍射是人们了解原子世界的利器,这一技术为人们解析了大量的重要生物学结构。今年是这一技术的百年诞辰,本期Nature杂志以特刊形式,介绍了X射线晶体衍射的过去、现在和将来。1914年,德国科学家Max von Laue因为发现晶体中的X射线衍射现象,获得了诺贝尔物理学奖,这一发现直接催生了X射
概述X射线单晶体衍射仪的应用领域
晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下: (一)晶体结构的成功测定,在晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成多面体外形(自范性
晶体,准晶体,非晶体X一射线衍射实验的区别
晶体,准晶体,非晶体这三种物质,如果仅用肉眼是难以分辨的。固体物质是否为晶体,一般用X射线衍射法予以鉴定。晶体会对X射线发生衍射,非晶体不会对X射线发生衍射。可以通过有无衍射现象来区分晶体和非晶体。至于准晶体,它是一种介于晶体和非晶体之间的固体。用X光对固体进行结构分析,它和晶体、非晶体的结构截然不
晶体,准晶体,非晶体X一射线衍射实验的区别
晶体,准晶体,非晶体这三种物质,如果仅用肉眼是难以分辨的。固体物质是否为晶体,一般用X射线衍射法予以鉴定。晶体会对X射线发生衍射,非晶体不会对X射线发生衍射。可以通过有无衍射现象来区分晶体和非晶体。至于准晶体,它是一种介于晶体和非晶体之间的固体。用X光对固体进行结构分析,它和晶体、非晶体的结构截然不
x射线单晶体衍射仪的应用
晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下: (一).晶体结构的成功测定,在 晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成 多面体外形(
X射线单晶体衍射仪的介绍
X射线单晶体衍射仪(X-ray single crystal diffractometer)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出
X射线单晶体衍射仪的应用
晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下:(一).晶体结构的成功测定,在晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成多面体外形(自范性),如
x射线单晶体衍射仪同步辐射
是一种大科学装置,设备大投资高,一般都需要政府投资,不是一般实验室所能具备的,需要 申请立项才能使用。因此,如果能发展出高强度的实验室光源和极高灵敏度的探测器,使在一般实验室中也能测定生物大分子结构,则绝对是有益的。 有许多生物反应的速度是相当快的, 如血红蛋白与一氧化碳的结合,速度在纳秒级(
X射线粉末衍射仪概述
X射线对于晶体的衍射强度是由晶体晶胞中原子的元素种类、数目及其排列方式决定的。 X射线衍射仪是利用X射线衍射法对物质进行非破坏性分析的仪器,由X射线发生器、测角仪、X射线强度测量系统以及衍射仪控制与衍射数据采集、处理系统四大部分组成。 “X射线衍射仪"可分为"X射线粉末衍射仪"和"X射线单晶
x射线单晶体衍射仪的基本公式
由于晶体中原子是周期排列的,其周期性可用点阵表示。而一个三维点阵可简单地用一个由八个相邻点构成的 平行六面体(称 晶胞)在三维方向重复得到。一个晶胞形状由它的三个边(a,b,c)及它们间的夹角(γ,α,β)所规定,这六个参数称点阵参数或 晶胞参数,见图1。这样一个三维点阵也可以看成是许多相同的平
x射线单晶体衍射仪的应用简介
晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下: (一).晶体结构的成功测定,在 晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成 多面体外形(
x射线单晶体衍射仪数据的积累
数据的积累 从前述的应用已经看出,晶体结构的测定及结构与性能关系的研究, 是今后走上人类按需设计新材料的基础。今日虽已测了许多晶体的结构,但还有许多未能测定,而且还不断有新化合物,新晶体出现, 因此不断的测定他们的结构,加以总结分析是十分必要的。当今已有多个晶体结构数据库,如: 1、剑桥结构
X射线单晶体衍射仪的基本公式
由于晶体中原子是周期排列的,其周期性可用点阵表示。而一个三维点阵可简单地用一个由八个相邻点构成的平行六面体(称晶胞)在三维方向重复得到。一个晶胞形状由它的三个边(a,b,c)及它们间的夹角(γ,α,β)所规定,这六个参数称点阵参数或晶胞参数,见图1。这样一个三维点阵也可以看成是许多相同的平面点阵平行
概述X射线衍射分析的应力测试
X 射线测定 应力以衍射花样特征的变化作为应变的量度。宏观 应力均匀分布在物体中较大范围内,产生的均匀应变表现为该范围内方向相同的各 晶粒中同名 晶面间距变化相同,导致衍 射线向某方向位移,这就是X 射线测量宏观应力的基础;微观应力在各晶粒间甚至一个晶粒内各部分间彼此不同,产生的不均匀应变表现为
X射线晶体学的研究步骤
①蛋白或DNA样品纯化②结晶③衍射、数据收集④确定蛋白结构衍射数据→数据处理→相位解析→建模→模型修正→模型检验⑤理解结构与功能的相互关系
X射线单晶体衍射仪的发展方向
数据的积累从前述的应用已经看出,晶体结构的测定及结构与性能关系的研究,是今后走上人类按需设计新材料的基础。今日虽已测了许多晶体的结构,但还有许多未能测定,而且还不断有新化合物,新晶体出现,因此不断的测定他们的结构,加以总结分析是十分必要的。当今已有多个晶体结构数据库,如:⑴剑桥结构数据库(CSD)。
简述X射线单晶体衍射仪的基本公式
由于晶体中原子是周期排列的,其周期性可用点阵表示。而一个三维点阵可简单地用一个由八个相邻点构成的平行六面体(称晶胞)在三维方向重复得到。一个晶胞形状由它的三个边(a,b,c)及它们间的夹角(γ,α,β)所规定,这六个参数称点阵参数或晶胞参数。这样一个三维点阵也可以看成是许多相同的平面点阵平行等距
X射线在晶体上产生衍射的条件是什么
一个小晶体衍射X射线,其衍射方向是与晶体的周期性(d)有关的。一个衍射总可找到一个晶面族HKL,使它与入射线在此面族上符合反射关系,就以此面族的符号HKL作为此衍射之指数。其间关系用布拉格方程(式1)来表示。 2dHKLsinθHKL=nλ ⑴ 式中,θHKL为入射线或反射线与晶面族之间的夹角(
x射线单晶体衍射仪相关的基本公式
由于晶体中原子是周期排列的,其周期性可用点阵表示。而一个三维点阵可简单地用一个由八个相邻点构成的 平行六面体(称 晶胞)在三维方向重复得到。一个晶胞形状由它的三个边(a,b,c)及它们间的夹角(γ,α,β)所规定,这六个参数称点阵参数或 晶胞参数,这样一个三维点阵也可以看成是许多相同的平面点阵平
简述X射线单晶体衍射仪的同步辐射
是一种大科学装置,设备大投资高,一般都需要政府投资,不是一般实验室所能具备的,需要申请立项才能使用。因此,如果能发展出高强度的实验室光源和极高灵敏度的探测器,使在一般实验室中也能测定生物大分子结构,则绝对是有益的。 有许多生物反应的速度是相当快的,如血红蛋白与一氧化碳的结合,速度在纳秒级(10
X射线晶体学的原理和方法
原理:蛋白质晶体内部结构为三维空间周期、有序、重复排列,要求每个结晶重复单位(分子或其复合体)的化学组成与分子构象是均一的。方法:为了获得可供衍射的单晶,就需要将纯化后的生物样品进行晶体生长。晶体生长的方法有很多,如气相扩散法、液相扩散法、温度渐变法、真空升华法、对流法等等,而目前应用最广泛的晶体生
x射线单晶体衍射仪四圆衍射仪法
四圆衍射仪法 常用闪烁计数器作探测器。入射光和探测器在一个平面内(称 赤道平面), 晶体位于入射光与探测器的轴线的交点,探测器可在此平面内绕交点旋转,因此只有那些法线在此平面内的晶面族才可能通过样品和探测器的旋转在适当位置发生衍射并被记录。如何让那些法线不在赤道平面内的面族也会发生衍射并能被记
X射线单晶体衍射仪的回摆法的简介
样品的转轴垂直于入射单色X射线,围绕转轴安装园筒状底片或在晶体后方,垂直于入射线安装平板底片。若晶体的某一晶轴(如a或b,c)与转轴平行,则在园筒状底片上会出现平行直线,平板底片则出现上下对称的双曲线。若让晶体在一个不大的角度范围(如10)内做摆动,则能产生的衍射数量不多,衍射点不会重叠。使摆动
x射线单晶体衍射仪衍射数据的处理一般步骤
1. 选择大小适度,晶质良好的 单晶体作试样, 收集衍射数据。 2. 指标化衍射图,求出晶胞常数,依据全部衍射线的衍射指标,总结出消光规律,推断晶体所属的 空间群。 3. 将测得的衍射强度作吸收校正,LP校正等各种处理以得出结构振幅|F|。 4. 相角和初结构的推测。常用推测相角的方法有派
X射线衍射仪
特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。X射线衍射仪的英文名称是X-ra