单晶X射线衍射的理论发展

发现衍射现象 图片 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的 晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同 数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用 布拉格方程表示:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。 运动学衍射理论 Darwin的理论称为X射线衍......阅读全文

单晶X射线衍射的理论发展

  发现衍射现象  图片  1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的 晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同 数量级,故由

单晶X射线衍射的发展方向

  X射线分析的新发展,金属X射线分析由于设备和技术的普及已逐步变成金属研究和有机材料, 纳米材料测试的常规方法。而且还用于动态测量。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用 单色

单晶X射线衍射的单晶衍射仪法

此法用射线计数仪直接记录射线的强度。单晶衍射仪有线性衍射仪、四圆衍射仪和韦森堡衍射仪等,其中以四圆衍射仪(图4),(见彩图)最为通用。所谓四圆是指晶体和计数器藉以调节方位的四个圆,分别称为φ圆、圆、w圆和2θ圆。φ圆是安装晶体的测角头转动的圆;圆是支撑测角头的垂直圆,测角头可在此圆上运动;w圆是使圆

单晶X射线衍射的单晶衍射仪法

此法用射线计数仪直接记录射线的强度。单晶衍射仪有线性衍射仪、四圆衍射仪和韦森堡衍射仪等,其中以四圆衍射仪(图4),(见彩图)最为通用。所谓四圆是指晶体和计数器藉以调节方位的四个圆,分别称为φ圆、圆、w圆和2θ圆。φ圆是安装晶体的测角头转动的圆;圆是支撑测角头的垂直圆,测角头可在此圆上运动;w圆是使圆

X射线衍射分析的理论发展介绍

  发现衍射现象  1912年劳埃等人根据理论预见,并用实验证实了 X射线与晶体相遇时能发生 衍射现象,证明了X射线具有 电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X 射线入射到晶体时,由 于晶体是由原子规则排列成的 晶胞组成,这些规则排列的原子间距离与入射X射线 波长有  相同数量级

X射线单晶衍射的简介

  X射线单晶衍射(X-ray diffraction of single crystal)是2014年全国科学技术名词审定委员会公布的药学名词,出自《药学名词》第二版。  当晶体被X射线照射时,晶体中各原子的散射X射线会叠加起来。当X射线为单色时,各原子的散射X射线发生干涉,在特定的方向上产生强的

单晶X射线衍射的原理简介

  利用晶体形成的 X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些  方向上相位得到加强,从而显示与结晶结构相对应的特有的 衍射现象。衍射X射线满足布拉格(W.L.Brag

X射线单晶体衍射仪的发展方向

数据的积累从前述的应用已经看出,晶体结构的测定及结构与性能关系的研究,是今后走上人类按需设计新材料的基础。今日虽已测了许多晶体的结构,但还有许多未能测定,而且还不断有新化合物,新晶体出现,因此不断的测定他们的结构,加以总结分析是十分必要的。当今已有多个晶体结构数据库,如:⑴剑桥结构数据库(CSD)。

X射线单晶体衍射仪

X射线单晶体衍射仪(X-ray single crystal diffractometer)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出

x射线单晶体衍射仪

  X射线单晶体衍射仪X射线单晶体衍射仪(X-ray single crystal diffractometer,简写为XRD)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解

x射线单晶衍射仪和多晶衍射仪的区别

衍射仪的进展主要在三个方面:1、X射线发生器,2、探测器,3、衍射几何与光路。折叠x射线发生器X射线发生器是进行X射线衍射实验所不可缺少的、重要的设备之一,其优劣会严重影响X射线衍射数据的质量。折叠探测器探测器是用来记录衍射谱的,因而是多晶体衍射设备中不可或缺的重要部件之一。早先被广泛使用的是照相底

X射线单晶体衍射仪的实验方法发展

  目前的实验室单晶体结构分析方法对于测定小分子的单晶体结构已经是相当完美了,但对于巨大的生物大分子就显得软弱无力,主要是光源强度不够,光的平行性不良,波长又不好调。目前主要要依靠同步辐射作为X射线源。中国二个同步辐射光源之一的位于合肥的国家同步辐射实验室(NSRL)已胜利完成用于生物大分子结构测定

关于X射线单晶体衍射仪结构的发展介绍

  目前虽已有各种方法用来解决相角的问题,但要置换许多同晶化合物还是颇费时和颇昂贵的,如果能如小分子那样用直接法来解决相角问题,将会方便许多。中国科学家范海福院士是研究直接法的世界权威人物,正在进行这方面的研究。

x射线单晶体衍射仪可能的发展方向

  数据的积累  从前述的应用已经看出,晶体结构的测定及结构与性能关系的研究, 是今后走上人类按需设计新材料的基础。今日虽已测了许多晶体的结构,但还有许多未能测定,而且还不断有新化合物,新晶体出现, 因此不断的测定他们的结构,加以总结分析是十分必要的。当今已有多个晶体结构数据库,如:(1)剑桥结构数

x射线单晶体衍射仪的应用

  晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下:  (一).晶体结构的成功测定,在 晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成 多面体外形(

X射线单晶体衍射仪的应用

晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下:(一).晶体结构的成功测定,在晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成多面体外形(自范性),如

X射线单晶与多晶衍射技术的区别

衍射仪的进展主要在三个方面:1、X射线发生器,2、探测器,3、衍射几何与光路。折叠x射线发生器X射线发生器是进行X射线衍射实验所不可缺少的、重要的设备之一,其优劣会严重影响X射线衍射数据的质量。折叠探测器探测器是用来记录衍射谱的,因而是多晶体衍射设备中不可或缺的重要部件之一。早先被广泛使用的是照相底

X射线单晶体衍射仪的介绍

X射线单晶体衍射仪(X-ray single crystal diffractometer)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出

X射线衍射技术的理论基础

当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。布拉格方程1913年英国物理学家

x射线单晶体衍射仪同步辐射

  是一种大科学装置,设备大投资高,一般都需要政府投资,不是一般实验室所能具备的,需要 申请立项才能使用。因此,如果能发展出高强度的实验室光源和极高灵敏度的探测器,使在一般实验室中也能测定生物大分子结构,则绝对是有益的。  有许多生物反应的速度是相当快的, 如血红蛋白与一氧化碳的结合,速度在纳秒级(

单晶射线衍射仪

  单晶射线衍射仪是一种用于化学领域的分析仪器,于2004年1月1日启用。  技术指标  额定功率:50kv 40mA。CCD探测器:62mm 4K CCD芯片,Mo 光源增益>170电子/X光子; X-射线发生器:功率3kW,Mo靶陶瓷X射线光管; 三轴(ω,2θ,φ)测角仪:φ360º旋转≤0.

x射线单晶体衍射仪数据的积累

  数据的积累  从前述的应用已经看出,晶体结构的测定及结构与性能关系的研究, 是今后走上人类按需设计新材料的基础。今日虽已测了许多晶体的结构,但还有许多未能测定,而且还不断有新化合物,新晶体出现, 因此不断的测定他们的结构,加以总结分析是十分必要的。当今已有多个晶体结构数据库,如:  1、剑桥结构

x射线单晶体衍射仪的应用简介

  晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下:  (一).晶体结构的成功测定,在 晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成 多面体外形(

X射线单晶体衍射仪的基本公式

由于晶体中原子是周期排列的,其周期性可用点阵表示。而一个三维点阵可简单地用一个由八个相邻点构成的平行六面体(称晶胞)在三维方向重复得到。一个晶胞形状由它的三个边(a,b,c)及它们间的夹角(γ,α,β)所规定,这六个参数称点阵参数或晶胞参数,见图1。这样一个三维点阵也可以看成是许多相同的平面点阵平行

x射线单晶体衍射仪的基本公式

  由于晶体中原子是周期排列的,其周期性可用点阵表示。而一个三维点阵可简单地用一个由八个相邻点构成的 平行六面体(称 晶胞)在三维方向重复得到。一个晶胞形状由它的三个边(a,b,c)及它们间的夹角(γ,α,β)所规定,这六个参数称点阵参数或 晶胞参数,见图1。这样一个三维点阵也可以看成是许多相同的平

x射线单晶体衍射仪单晶体结构分析实验方法的发展

   单晶体结构分析实验方法的发展  目前的实验室单晶体结构分析方法对于测定小分子的单晶体结构已经是相当完美了, 但对于巨大的生物大分子就显得软弱无力,主要是光源强度不够,光的平行性不良,波长又不好调。目前主要要依靠 同步辐射作为 X射线源。我国二个 同步辐射光源之一的位于合肥的国家同步辐射实验室(

X射线晶体衍射学的理论依据

  对于X 射线衍射理论的研究, 目前有两种理论:运动学和动力学衍射理论 [2] 。  运动学衍射理论  达尔文(Darwin)的理论称为X 射线衍射运动学理论。该理论把衍射现象作为三维Frannhofer 衍射问题来处理, 认为晶体的每个体积元的散射与其它体积元的散射无关, 而且散射线通过晶体时不

X衍射仪和单晶X衍射仪的区别

X射线衍射仪可以分为X射线粉末衍射仪和X射线单晶衍射仪。在传统的X射线衍射仪器中,单晶衍射仪及粉晶衍射仪功能各别,如四圆单晶衍射仪,如果所挑选的晶体颗粒不是严格的单晶体(该单晶体用于准直X射线,即获得单色的X射线),则无法进行后继的测试研究,而粉晶衍射仪也不能进行单晶数据收集。

X衍射仪和单晶X衍射仪的区别

X射线衍射仪可以分为X射线粉末衍射仪和X射线单晶衍射仪。在传统的X射线衍射仪器中,单晶衍射仪及粉晶衍射仪功能各别,如四圆单晶衍射仪,如果所挑选的晶体颗粒不是严格的单晶体(该单晶体用于准直X射线,即获得单色的X射线),则无法进行后继的测试研究,而粉晶衍射仪也不能进行单晶数据收集。

X衍射仪和单晶X衍射仪的区别

X射线衍射仪可以分为X射线粉末衍射仪和X射线单晶衍射仪。在传统的X射线衍射仪器中,单晶衍射仪及粉晶衍射仪功能各别,如四圆单晶衍射仪,如果所挑选的晶体颗粒不是严格的单晶体(该单晶体用于准直X射线,即获得单色的X射线),则无法进行后继的测试研究,而粉晶衍射仪也不能进行单晶数据收集。