波长色散X射线荧光光谱仪利用原级的介绍
X射线荧光光谱仪又称XRF光谱仪,有色散型和非色散型两种。色散型又分为波长色散型和能量色散型。波长色散型XRF光谱仪由X射线管激发源,分光系统,探测器系统,真空系统和气流系统等部分组成。根据分析晶体的聚焦几何条件不同,分为非聚焦反射平晶式,半聚焦反射弯晶式,全聚焦反射弯晶式,半聚焦透射弯晶式等。其原理是:试样受X射线照射后,元素的原子内壳层电子被激发,并产生壳层电子跃迁而发射出该元素的特征X射线,通过探测器测量元素特征X射线的波长(能量)的强度与浓度的比例关系,便可进行定量分析。......阅读全文
X射线荧光分析仪的主要分类
根据分光方式的不同,X射线荧光分析可分为能量色散和波长色散两类,也X射线荧光分析就是通常所说的能谱仪和波谱仪,缩写为EDXRF和WDXRF。通过测定荧光X射线的能量实现对被测样品的分析的方式称之为能量色散X射线荧光分析,相应的仪器称之为能谱仪,通过测定荧光X射线的波长实现对被测样品分析的方式称之为波
关于XRF的仪器分类
根据分光方式的不同,X射线荧光分析可分为能量色散和波长色散两类,也X射线荧光分析就是通常所说的能谱仪和波谱仪,缩写为EDXRF和WDXRF。 通过测定荧光X射线的能量实现对被测样品的分析的方式称之为能量色散X射线荧光分析,相应的仪器称之为能谱仪,通过测定荧光X射线的波长实现对被测样品分析的方式
单波长X射线荧光光谱仪原理与应用
一、 概述 单波长X射线荧光光谱仪(Monochromatic Excitation X-ray Fluorescence Spectrometer: ME XRF),也可称为单色化激发X射线荧光光谱仪,其通过单色化光学器件将X射线管出射谱某单一波长(对应单一能量)衍射取出并照射样品,由于消除
X射线荧光分析实验所用的仪器介绍
根据分光方式的不同,X射线荧光分析可分为能量色散和波长色散两类,也就是通常所说的能谱仪和波谱仪,缩写为EDXRF和WDXRF。 通过测定荧光X射线的能量实现对被测样品的分析的方式称之为能量色散X射线荧光分析,相应的仪器称之为能谱仪,通过测定荧光X射线的波长实现对被测样品分析的方式称之为波长色散
关于X射线荧光分析的分类介绍
1、根据分光方式的不同,X射线荧光分析可分为能量色散和波长色散两类,也就是通常所说的能谱仪和波谱仪,缩写为EDXRF和WDXRF。 通过测定荧光X射线的能量实现对被测样品的分析的方式称之为能量色散X射线荧光分析,相应的仪器称之为能谱仪,通过测定荧光X射线的波长实现对被测样品分析的方式称之为波长
色散X荧光光谱仪原理
当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为 (10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态.这个过程称为驰过程.驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层的电
能量色散X射线荧光光谱技术基本介绍
能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分辨率光谱仪通常采用液氮冷却的半导体探测器,如Si(Li)和高纯锗探测器等。低分辨便携式光谱仪常常采用正比计数器或闪烁计
X射线能量色散荧光光谱仪能否鉴别真假黄金?
市场中出现在昂贵的黄金中参入超级便宜的钌,很难辨别真伪。钌的熔点 2607 K(2334 °C),是黄金的2倍多,钌的性质很稳定,耐腐蚀性很强,常温即能耐盐酸、硫酸、硝酸以及王水的腐蚀。参钌的黄金常规的熔解方法都只能熔解黄金和其他熔点低的金属,未被熔解的金属钌就很好隐藏了自己。钌的价格每克相对于金而
最新国家计量技术规范发布-含波长色散X射线荧光光谱仪等43项
近日,市场监管总局依据《中华人民共和国计量法》相关规定,正式批准并发布了《交流电压计量器具检定系统表》、《波长色散X射线荧光光谱仪》等43项国家计量技术规范,该批规范将于2025年12月11日起正式实施。此次发布的43项规范涵盖了众多领域,包括电力、气象、交通、医疗等。这些新规范的发布与实施,将进一
能量色散X射线荧光光谱技术
能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分辨率光谱仪通常采用液氮冷却的半导体探测器,如Si(Li)和高纯锗探测器等。低分辨便携式光谱仪常常采用正比计数器或闪烁计
波长色散型X荧光光谱仪的技术指标和功能
波长色散型X-荧光光谱仪是一种用于地球科学、工程与技术科学基础学科、能源科学技术领域的分析仪器,于2006年06月09日启用。 1、技术指标 RSD=0.09% 计数率按仪器技术规定的测试条件, Cu-Kα为808Kcps; P-Kα为259 Kcps; Al-Kα在PET晶体下为452 K
2010年岛津X荧光(波长色散)用户会邀请
尊敬的岛津X射线荧光(波长色散)用户: 为了增进岛津X荧光(波长色散)用户之间的技术交流;加强用户与岛津公司之间的沟通协作;提供行业用户沟通平台。由中国岛津X荧光用户协会与岛津国际贸易(上海)有限公司主办的中国岛津X荧光(波长色散)2010年用户交流会,定于2010年8月2
波长型X射线荧光光谱仪主要部件及功能
1.光源早期的荧光分光光度计,配有能发生很窄汞线的低压汞灯。使用高压汞灯,谱线被加宽,而且也存在高强度的连续带。然而,一个完整的激发光谱的测定需一种能发射从可见到紫外范围的较高强度的光辐射的灯。氙弧灯能适于此条件,因此,它是目前在荧光分光光度计中广泛使用的光源。2.单色器单色器的作用是把光源发出的连
波长色散X射线光谱分析仪的内容
在波长色散X射线光谱分析仪中,由于谱线之前互相干扰比较少,并且减少这种干扰的方法较多,在多数情况下谱线干扰现象不是影响分析结果的主要因素。但是在某些情况如稀土化合物中稀土元素的测定中,谱线重叠现象仍然是严重的。这种干扰,轻则影响强度的确定,增加分析线强度测量的统计误差,降低分析元素的测定灵敏度;
实验室光学仪器X射线荧光光谱仪的原理
现代X射线荧光光谱仪已发展成一个大家族,可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱基本上是用Si(Li)半导体探测器进行检测的。波长色散X射线荧光光谱还可进
X射线荧光光谱仪分类中波长和能量有什么区别
X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。 波长色散型X射线荧光光谱仪(WD-XRF),是用晶体分光而后由探测器接收经过衍
能量色散X荧光光谱仪
能量色散X荧光光谱仪用途:1.荧光激发光谱和荧光发射光谱2.同步荧光波长和能量扫描光谱 3.3D 4.Time Base和CWA固定波长单点测量 5.荧光寿命测量,包括寿命分辨及时间分辨 6.计算机采集光谱数据和处理数据
概述X射线荧光光谱仪X射线的产生
根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。 1、连续谱线 连续光谱是由高能的带电粒子撞击金属靶面时受
能谱干扰波长色散X射线光谱分析仪的介绍
在各种探测器结合脉冲幅度分析器使用时,对一定波长的谱线,将产生具有平均脉冲幅度正比于光子能量的脉冲幅度分布。这种脉冲幅度分布的能谱干扰,不只是来自激发源、样品成光路中的干扰线,也可能来自计数器的逃逸峰在气体探测器中,决定于所充的情性气体种类(Ar、Kr或Xe等)及其能量分辨率;闪烁探测器则决定于
XRF的两大类型,波长色散型和能谱色散型区别何在?
X射线荧光分析仪简介 X射线荧光分析仪是一种比较新型的可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。 波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶体分光而后
关于XRF的基本分析
当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。 根据
X射线荧光光谱法的分析
X射线荧光光谱法---能量色散 利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。 当原子受到X射线光子(原级X射线)或其他微观粒子的激发
能量色散X射线荧光光谱技术简介
能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分辨率光谱仪通常采用液氮冷却的半导体探测器,如Si(Li)和高纯锗探测器等。低分辨便携式光谱仪常常采用正比计数器或闪烁计
XRD原理
X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空
XRD-原理
X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空
XRD-原理
X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空
XRD原理
X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空
XRD原理
X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空
XRD原理
X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空
XRD-原理
X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空