X射线荧光光谱仪分类中波长和能量有什么区别
X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。 波长色散型X射线荧光光谱仪(WD-XRF),是用晶体分光而后由探测器接收经过衍射的特征X射线信号。如果分光晶体和控测器作同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行定性和定量分析。 能谱色散型X荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)直接进入半导体探测器,便可以据此进行定性分析和定量分析。 由于普通能量色散X荧光采用低功率X射线管,又采用滤光片扣除背景和干扰,其背景偏高,分辨率偏小,使得应用范围受到限制,特别是在轻元素的分析受到限制......阅读全文
X射线荧光光谱仪分类中波长和能量有什么区别
X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。 波长色散型X射线荧光光谱仪(WD-XRF),是用晶体分光而后由探测器接收经过衍
X射线荧光光谱仪(XRF)-简介
X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF),是用晶体分光而后由探测器接收经过衍射的
X射线荧光光谱仪检测矿石的介绍
矿石检测是选矿企业选矿和生产的利器,没有快速准确的数据支持,难以达到高效的生产。随着科学技术的进步,现代分析仪器功能十分强大,在效率、环保、职业健康方面优势巨大,因此用途也相当广泛,已逐步取代传统化学分析。X-射线荧光光谱仪(XRF)就是其中的一种定量分析仪器。
X射线荧光光谱仪的分类有几种
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。X射线荧光光谱是一种常用的光谱技术,既可用于材料的组成成分分析,又可用于涂层和多层薄膜厚度的测量等。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平,分
能量色散X射线荧光光谱仪
在20世纪80年代初,EDXRF谱仪主要有:①液氮冷却的Si(Li)半导体探测器与X射线管及高压电源组成的谱仪; ②非色散型可携式谱仪,它主要由封闭式正比计数器和放射性核素源组成,通常一次仅能测定1~2个元素。EDXRF谱仪由于仪器性能的改善现在测定元素已由Na扩展到F,甚至可检出C; 可携式XRF
能量色散X射线荧光光谱仪
(1)现场和原位EDXRF。现场和原位EDXRF分为两种: ①移动式谱仪,系指可以随身携带的谱仪,用于现场分析; ②手持式谱仪, 要求整机质量小于1.5 kg,可实施原位分析。现场EDXRF谱仪依据所用的激发源、探测器和电子学线路、谱仪的技术指标可划分为四代。第一代约在 20世纪60年代中期,由英、
能量色散X射线荧光光谱仪介绍
能量色散X射线荧光光谱仪是根据元素辐射x射线荧光光子能量不同,经探测器接收后用脉冲高度分析器区别,进行元素鉴定,根据分析线脉冲高度分布的积分强度进行元素定量的分析方法。能量色散X射线荧光光谱仪主要用于固体、粉末或液体物质的元素分析,被广泛用于许多部门和领域,已成为理化检测、野外现场分析和过程控制分析
能量色散X射线荧光光谱仪介绍
能量色散X射线荧光光谱仪是根据元素辐射x射线荧光光子能量不同,经探测器接收后用脉冲高度分析器区别,进行元素鉴定,根据分析线脉冲高度分布的积分强度进行元素定量的分析方法。能量色散X射线荧光光谱仪主要用于固体、粉末或液体物质的元素分析,被广泛用于许多部门和领域,已成为理化检测、野外现场分析和过程控制分析
能量色散X荧光能谱仪
能量色散X-荧光能谱仪是一种用于化学、材料科学领域的分析仪器,于2011年11月10日启用。 技术指标 检测项目:适用于金属、化工、石油、土壤、矿石元素分析,满足固体、液体、粉末、 水质及油类等形态样品中的多种无机元素的定性、半定量和定量分析。满足镀层和薄膜厚度的测定。用于科研制标工作。 检
能量色散X射线荧光光谱仪技术原理
能量色散X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。 能量色散X射线荧光光谱仪技术原理能量色散X射线荧
能量色散X射线荧光光谱仪的开发
X射线荧光分析方法因其具有对试样无损坏、多元素快速分析、准确性高、分析速度快、不污染环境等特点,适合直接用于生产的过程控制和检测中,具有广阔的市场前景和相当的研究意义。本文针对RoHS检测的需求,分析了X射线荧光分析技术的理论基础,明确了能量色散X射线荧光光谱仪的工作原理及相应光谱分析软件设计方法。
能量色散X射线荧光光谱仪的开发
X射线荧光分析方法因其具有对试样无损坏、多元素快速分析、准确性高、分析速度快、不污染环境等特点,适合直接用于生产的过程控制和检测中,具有广阔的市场前景和相当的研究意义。本文针对RoHS检测的需求,分析了X射线荧光分析技术的理论基础,明确了能量色散X射线荧光光谱仪的工作原理及相应光谱分析软件设计方法。
能量色散型X射线荧光光谱仪的主要特点有哪些?
物质是由原子组成的,每个原子都有一个原子核,原子核周围有若干电子绕其飞行。不同元素由于原子核所含质子不同,围绕其飞行的电子层数、每层电子的数目、飞行轨道的形状、轨道半径都不一样,形成了原子核外不同的电子能级。 在受到外力作用时,例如用X-光子源照射,打掉其内层轨道上飞行的电子,这时该电子腾出后所
荧光光谱仪和稳态荧光光谱仪有什么区别
所用光源一般为氙灯,其激发为连续波,对于荧光物质来说其测得发射和激发可称作稳态荧光光谱,如光源为脉冲激光的荧光光谱仪可称作瞬态荧光光谱,在这里荧光光谱仪可能范围更广一些
X射线荧光光谱仪的分类介绍
根据X射线荧光的产生原理,一台X射线荧光光谱仪在结构上主要由激发源、色散系统、探测系统等3部分组成。按照色散方式的不同,X射线荧光光谱仪可以分为2类:波长色散型X射线荧光光谱仪(WDXRF)和能量色散型X射线荧光光谱仪(EDXRF)。下面主要介绍波长色散型X射线荧光光谱仪(WDXRF)的仪器结构
偏振能量色散X射线荧光光谱法测定钢铁生产中物料成分
土壤重金属污染已是当今土壤污染中污染面积最广、危害最大的环境问题之一。因此对土壤中重金属的检测,已经成为环境保护和农业生产的重要工作,同时也是对污染土壤进行治理和修复的首要环节。EDXRF光谱法具有分析速度快、精度高、操作简单、成本低、可原位检测等优点,在许多重金属分析领域已得到应用。但在土壤重金属
能量色散X射线荧光光谱仪的工作原理
能量色散x射线荧光光谱仪energy-disnersi}e x-ray flu-orexence spectromet。利用脉冲高度分析器进行能量色散的x射线荧光光谱仪公与波长色散x射线荧光光谱仪相比,它的结构简单。可使用小功率x射线管激发和简单的分光系统。采用半导体探测器和多道脉冲高度分析器可
X荧光光谱仪的优缺点及分类
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品,产生X荧光(二次X射线),探测器对X荧光进行检测。优缺点优点a) 分析速度快。测定用时与测定精密度有关,但一般都很短,10~300秒就可以测完样品中的全部待测元素。b) X射线荧光光谱跟
直读光谱仪和荧光光谱仪有什么区别?
直读光谱仪要求试样具有导电性,且只能是固体样品,简单地说就是火花直读只能分析金属固体样品中的元素。而x射线荧光光谱仪由计算机控制,自动化水平高,分析速度快,它对样品要求不高,可以分析粉末样品、固体样品、熔融样品、液体样品,不需要样品具有导电性,金属及非金属样品均可分析。 直读一般分析低含量的元
X射线荧光光谱仪分类的相关介绍
按照色散方式的不同,X射线荧光光谱仪可以分为2类:波长色散型X射线荧光光谱仪(WDXRF)和能量色散型X射线荧光光谱仪(EDXRF)。 能量色散型x射线光谱仪 现代应用X射线荧光光谱分析技术目前已在地质、冶金、材料、环境等无机分析领域得到了广泛的应用,是各种无机材料中主组分分析最重要的技术手
能量色散型X射线荧光光谱仪的应用简介
分析仪器主要应用于科学的研究和发展、工业过程控制以及半导体材料的物性测量领域。可为客户提供量身定制的无损分析解决方案,用以分析表征广泛的产品,例如石化产品、塑料和聚合物、环境、医药、采矿、建筑材料、研究与教育、金属、食品和化妆品等多个行业领域。
X射线能量色散荧光光谱仪能否鉴别真假黄金?
市场中出现在昂贵的黄金中参入超级便宜的钌,很难辨别真伪。钌的熔点 2607 K(2334 °C),是黄金的2倍多,钌的性质很稳定,耐腐蚀性很强,常温即能耐盐酸、硫酸、硝酸以及王水的腐蚀。参钌的黄金常规的熔解方法都只能熔解黄金和其他熔点低的金属,未被熔解的金属钌就很好隐藏了自己。钌的价格每克相对于金而
X荧光光谱仪分类及比较
一、X-射线荧光光谱仪(XRF) 简介 X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。 波长色散型X射线荧光光谱仪(
原子荧光光度计与X射线荧光光谱仪的区别
有一些人把原子荧光光度计与X射线荧光光谱仪误认为是同一种仪器,其实它们是有区别的。首先我们分别了解下它们的定义。 1、原子荧光光度计是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中原子化而形成
光谱仪的原理是怎样的那?
光谱仪又称光谱分析仪,应用分类繁多,我们着重介绍手持式合金分析仪,全谱火花直读光谱仪,X射线荧光光谱仪,拉曼光谱仪,激光诱导击穿光谱仪。 光谱仪原理: 1,手持式光谱仪和能量色散X射线荧光光谱仪原理基本一致: X-射线荧光分析仪(XRF)是一种较新型的可以对多元素进行快
X射线荧光光谱仪(XRF)的基本分类
作为一种比较分析技术,在一定的条件下,利用初级X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析的仪器。 按激发、色散和探测方法的不同,分为: X射线光谱法(波长色散) X射线能谱法(能量色散)
波长色散X射线荧光光谱仪的新进展
X射线荧光光谱分析在20世纪80年代初已是一种成熟的分析方法,是实验室、现场分析主、次量和痕量元素的方法之一。X射线荧光光谱仪(XRF)是利用原级X射线或其他光子源激发待测物质中的原子,使之产生荧光(次级X射线),从而进行物质成分分析的仪器。X射线荧光光谱仪又称XRF光谱仪,有波长色散型和能量色散型
X射线荧光光谱分析技术的发展
归纳了X-射线荧光光谱分析技术发展的进程。从现代控制技术的改善、仪器检测性能的提高、元素检测范围的扩大等8方面阐述了波长色散X-射线荧光光谱技术的进展,还就能量色散X-射线荧光光谱仪的X射线管和探测器技术的快速发展及近10年来我国在X-射线荧光光谱分析方法方面的论文发表情况进行了总结,对近年来X-射
X射线荧光光谱分析技术的发展
归纳了X-射线荧光光谱分析技术发展的进程。从现代控制技术的改善、仪器检测性能的提高、元素检测范围的扩大等8方面阐述了波长色散X-射线荧光光谱技术的进展,还就能量色散X-射线荧光光谱仪的X射线管和探测器技术的快速发展及近10年来我国在X-射线荧光光谱分析方法方面的论文发表情况进行了总结,对近年来X-射
EDX:X射线能量色散光谱仪有什么用途
EDX能量光谱,主要用来检测未知物质中的金属元素和部分非金属元素的种类和含量,一般能检测的元素范围:NA-U之间的元素.检测元素含量可达PPM级.