关于线状光谱的基本介绍
由狭窄谱线组成的光谱。单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱。当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波。严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较窄的波长范围内仍包含各种不同的波长成分。原子光谱按波长的分布规律反映了原子的内部结构,每种原子都有自己特殊的光谱系列。通过对原子光谱的研究可了解原子内部的结构,或对样品所含成分进行定性和定量分析。......阅读全文
关于线状光谱的基本介绍
由狭窄谱线组成的光谱。单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱。当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波。严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较窄的波长
连续光谱-线状光谱-吸收光谱-发射光谱的区别
区别和关系:连续态光谱和线状光谱都是发射/吸收光谱,而吸收光谱只是吸收,发射光谱发射而已。后两者包含于前两者。连续光谱是原子中处于束缚态的电子跃迁到自由散射态或者相反所产生的发射/吸收光谱, 因为没有确定的能级间隔, 表现出宽泛的 ,不确定的光谱带, 叫做连续光谱。线状光谱是原子中电子的两个束缚态能
为什么原子吸收光谱是线状光谱
原子吸收光谱主要是因为电子的能级跃迁产生的,而电子的能级差相对比较大,因此显现出线状;分子吸收光谱除了由电子跃迁引起的对光子的吸收外,还有分子转动和振动引起的吸收,转动和振动能级能极差比较小,在光谱测量的时候如果没有完全分辨出来就呈现出带状光谱。但是如果用高分辨的探测仪,比如傅立叶光谱仪,就可以将带
关于分子光谱的基本介绍
分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。分子光谱与分子绕轴的转动、分子中原子在平衡位置的振动和分子内电子的跃迁相对应。
关于光谱的基本信息介绍
光谱(spectrum) :是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。光谱中最大的一部分可见光谱是电磁波谱中人眼可见的一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人类大脑视觉所能区别的所有颜色,譬如褐色和粉
氢原子光谱为什么是线状的
原子光谱实际上是由于原子内部电子跃迁而发射出来的,又由于原子内部的电子是有限的,分布在一定的轨道上,其发射出的光的频率亦是相应的有限,因此其光谱是线状谱
氢原子光谱为什么是线状的
原子光谱实际上是由于原子内部电子跃迁而发射出来的,又由于原子内部的电子是有限的,分布在一定的轨道上,其发射出的光的频率亦是相应的有限,因此其光谱是线状谱
太阳光谱属于吸收光谱还是线状谱
太阳光谱属于吸收光谱。处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱。太阳光谱背景是明亮的连续光谱。在钠的标识谱线的位置上出现了暗线。通过大量实验观察总结,每一种元素的吸收光谱里暗线的位置与其明线光谱的位置互相重合。即每种元素所发
关于光谱辐射计的基本介绍
光谱辐射计用于测定辐射源的光谱分布,能够同时建立目标或背景的强度、光谱特性,可对导弹羽烟光谱和强度及大气透射比进行测量。光谱辐射计一般由收集光学系统、光谱元件、探测器和电子部件等组成,类型包括傅里叶变换光谱辐射计、多探测器色散棱镜和光栅光谱辐射计、圆形渐变滤光器(CVF)低光谱分辨率光谱辐射计等
关于光栅光谱仪的基本介绍
光栅光谱仪,是将成分复杂的光分解为光谱线的科学仪器。通过光谱仪对光信息的抓取、以照相底片显影,或电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。光栅光谱仪被广泛应用于颜色测量、化学成份的浓度测量或辐射度学分析、膜厚测量、气体成分分析等领域中。
关于拉曼光谱的含义基本介绍
光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。 拉曼光谱-原理 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(
关于线光谱的基本信息介绍
物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱,简称光谱。光谱可分为三种不同类别的光谱:线状光谱、带状光谱和连续光谱。线状光谱主要产生于原子,由一些不连续的亮线组成;带状光谱主要产生于分子,由一些密集的某个波长范围内的光组成;连续光谱则主要产生于白炽的固体、液体或
关于光谱的基本原理介绍
复色光中有着各种波长(或频率)的光,这些光在介质中有着不同的折射率。因此,当复色光通过具有一定几何外形的介质(如三棱镜)之后,波长不同的光线会因出射角的不同而发生色散现象,投映出连续的或不连续的彩色光带。这个原理亦被应用于著名的太阳光的色散实验。太阳光呈现白色,当它通过三棱镜折射后,将形成由红、
关于光谱仪的基本信息介绍
光谱仪又称分光仪,广泛为人知的为直读光谱仪。以光电倍增管等光探测器测量谱线不同波长位置强度的装置。它由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种
关于光谱线的基本信息介绍
光谱线是均匀连续光谱中的暗线或亮线,这是由于与附近频率相比在窄频率范围内光的发射或吸收。 光谱线通常用于从其特征谱线鉴定原子和分子。因为由于电子云中的电子在环绕原子核时,只能受限拥有一些特定的能量,所以一旦电子能量有变化,此能量差就会产生该原子特有的光子,这就是谱线的由来。
关于原子光谱的基本信息介绍
原子光谱,是由原子中的电子在能量变化时所发射或吸收的一系列波长的光所组成的光谱。原子吸收光源中部分波长的光形成吸收光谱,为暗淡条纹;发射光子时则形成发射光谱,为明亮彩色条纹。两种光谱都不是连续的,且吸收光谱条纹可与发射光谱一一对应。每一种原子的光谱都不同,遂称为特征光谱。
关于吸收光谱的基本信息介绍
具有连续谱的光波通过物质样品时,处于基态的样品原子或分子将吸收特定波长的光而跃迁到激发态,于是在连续谱的背景上出现相应的暗线或暗带,称为吸收光谱。每种原子或分子都有反映其能级结构的标识吸收光谱。研究吸收光谱的特征和规律是了解原子和分子内部结构的重要手段。吸收光谱首先由J.V.夫琅和费在太阳光谱中
关于成像光谱辐射计的基本介绍
成像光谱辐射计可同时获取被测物的光谱、空间和时间特征,一般采用光栅或棱镜分光,可在紫外/可见/近红外/短波红外等光谱范围内对目标或背景成像,捕获辐射源的瞬态光谱,获取地表物体、被测样品等的辐射强度-光谱曲线。 成像光谱辐射计一般采用推扫帚扫描方式,以机械扫描和成像组件共同组合完成三维信息的获取
关于拉曼光谱的基本信息介绍
拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。
关于直读光谱仪的基本内容介绍
直读光谱仪,英文名为OES(Optical Emission Spectrometer),即原子发射光谱仪。二战后,由于欧洲重建,市场对钢铁检测有巨大的需求,也促进了相关检测仪器的发展。 六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展,由于计算机技术的发展,电子技术的发展,电子计算机
关于超光谱成像仪的基本介绍
美国著名的trw公司研制的超光谱成像仪代号为trwis-3,它是该公司最新的一种成像光谱仪。由于trwis-3的波段范围很宽,从0.4μm到2.5μm,具有384个连续光谱通道,且可见光近红外带宽仅为5nm,短波红外也只有6.25nm,信噪比又很高(几百比1),显然,它不论在军事上还是在民用方面
关于荧光谱仪的基本信息介绍
荧光谱仪是一种用于化学、生物学、环境科学技术及资源科学技术领域的分析仪器,于2012年12月1日启用。 一、荧光谱仪的技术指标: 光学 所有波长全反射聚焦,微样品精确成像 光源 无臭氧Xe灯 光谱计 平面光栅,Czery-Turner设计,所有波长保持聚 激发 200-950nm,最佳在紫外
氢原子光谱为什么是线状而不是连续的
光谱呈现出不是连续的线状是因为能量量子化的结果。量子力学表明:“能量只能一份一份的传递的,它并不是连续性的”,这个是量子力学微观世界的基本性质。原子核内电子需要吸收特定的频率波长使原子核内电子由激发态进行跃迁,而原子核吸收和发射光子都是因为原子核吸收特定的频率波长从原子核内部逸出电子在原子核外进行各
太阳光谱是线状谱还是连续谱
太阳的光谱是连续光谱中有着数以万计的吸收线和发射线连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱.炽热的固体、液体和高压气体的发射光谱是连续光谱.例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱.
线状DNA的定义
中文名称线状DNA英文名称linear DNA定 义DNA的一种构象。同时具有游离3`端和5`端的线性长链DNA分子。应用学科遗传学(一级学科),分子遗传学(二级学科)
关于便携地物光谱仪的基本信息介绍
便携地物光谱仪是一种用于测绘科学技术领域的分析仪器,于2015年1月20日启用。 一、便携地物光谱仪的技术指标: 通道数:2151;波长范围:350~2500nm;波长精度:0.5nm;波长重复率:0.1 nm。 采样带宽:1.4nm@350-1000nm;2nm@1000-2500nm 光
关于红外光谱法的基本信息介绍
红外吸收光谱法简称红外光谱法。当一定频率(能量)的红外光照射分子时,如果分子中某个基团的振动频率和外界红外辐射频率一致时,光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。将分子吸收红外光的情况用仪器记录就得到该试样的红外吸收光谱图,利用光谱图中吸收峰的波长
关于荧光光谱仪的基本信息介绍
荧光光谱仪又称荧光分光光度计,是一种定性、定量分析的仪器。通过荧光光谱仪的检测,可以获得物质的激发光谱、发射光谱、量子产率、荧光强度、荧光寿命、斯托克斯位移、荧光偏振与去偏振特性,以及荧光的淬灭方面的信息。
关于便携式地物光谱仪的基本介绍
便携式地物光谱仪是一种用于生物学、水产学、药学、食品科学技术领域的电子测量仪器,于2014年10月16日启用。 一、便携式地物光谱仪的技术指标: 光谱范围:350-1050nm最快采集速度:17ms采样间隔:1.5nm,波长精度+-1nm全自动灵敏度调整。 二、便携式地物光谱仪的主要功能
关于光谱分析的基本原理介绍
发射光谱分析是根据被测原子或分子在激发状态下发射的特征光谱的强度计算其含量。 吸收光谱是根据待测元素的特征光谱,通过样品蒸汽中待测元素的基态原子吸收被测元素的光谱后被减弱的强度计算其含量。它符合郎珀-比尔定律: A= -lg I/I o= -lgT = KCL 式中I为透射光强度,I0为发