X射线荧光光谱仪检测矿石的介绍

矿石检测是选矿企业选矿和生产的利器,没有快速准确的数据支持,难以达到高效的生产。随着科学技术的进步,现代分析仪器功能十分强大,在效率、环保、职业健康方面优势巨大,因此用途也相当广泛,已逐步取代传统化学分析。X-射线荧光光谱仪(XRF)就是其中的一种定量分析仪器。......阅读全文

X射线荧光光谱仪的全反射荧光

  如果n1>n2,则介质1相对于介质2为光密介质,介质2相对于介质1为光疏介质。对于X射线,一般固体与空气相比都是光疏介质。所以,如果介质1是空气,那么α1>α2,即折射线会偏向界面。如果α1足够小,并使α2=0,此时的掠射角α1称为临界角α临界。当α1

关于X射线荧光光谱仪的应用特点介绍

  X射线荧光光谱仪(XRF)是用于元素定量分析的仪器,广泛应用于钢铁、水泥、石油化工、环境保护、有色冶炼、材料、科研等各个领域,其在制样方便、无损、快速等方面优于其它分析方法,但其在定量精度和样品适应范围等方面一直存在挑战。  当前XRF广泛应用的领域往往具备三个特点:一是样品基体相对稳定;二是分

X射线荧光光谱仪的原理和应用介绍

X射线荧光光谱仪(X-ray Fluorescence Spectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-ray fluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特别是

X射线荧光光谱仪的特点及应用介绍

   X射线荧光光谱仪应用领域:冶金、铸造、机械、科研、商检、汽车、石化、造船、电力、航空、核电、金属和有色金属冶炼、加工和回收工业中的各种分析。    X射线荧光光谱仪主要特点:    1、电子系统采用国际标准机笼、高集成化设计。    2、ZL技术的入缝及整体出射狭缝制造技术,确保光学系统

X-射线荧光光谱仪的组成部分介绍

  (1)X射线系统(X射线光管、高压变压器、管压管流控制单元);  (2)水循环冷却系统(内外部冷却水单元、温度、电导率控制监测单元);  (3)真空系统(真空泵、样品室);  (4)检测系统(光谱室、分光晶体、衰减器、狭缝、测角仪、晶体交换器等);  (5)检测记录系统(流〈充〉气正比计数器和闪

XRFX射线荧光光谱仪的优点介绍

  X射线管产生入射X射线(一次X射线),激发被测样品。    受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。    探测系统测量这些放射出来的二次X射线的能量及数量。    然后,仪器软件将探测系统所收集到的信息转换成样品中各种

关于X射线荧光光谱仪的维护保养介绍

  1、进样系统的维护保养  待仪器关闭后打开仪器外盖,卸下进样系统上的样品杯,卸开样品杯用酒精纱布清理样品杯的所有部件,用酒精纱布清理射线管底座的O环,待清理完后安装好样品杯和仪器外盖开机,维护完毕。  2、循环水的维护保养  换外循环水:首先按正常程序关闭仪器包括仪器背面的主电源,关闭循环水机,

波长色散X射线荧光光谱仪精度测定标准制订完成

  近日,国家标准《铁矿石 波长色散X射线荧光光谱仪 精度的测定》完成草案编制并公开征求意见,截止时间为2021年10月12日。该标准由广州海关技术中心、钢研纳克检测技术股份有限公司、宁波海关技术中心等单位起草,使用翻译法等同采用ISO/TR 18231:2016(E)《铁矿石 波长色散X射线荧光光

X荧光镀层测厚仪进行有害物质的检测

X荧光镀层测厚仪进行有害物质的检测   1.1样品制备:散装样品均质的各种块,板或铸件,可以利用适当的工具有一定的样本量样本。照射的样本应该是比较光滑和平整。这种分析是材料:测试样品的电影的时候,要注意均匀的薄膜厚度和组成,我们通常膜平铺覆盖到一定厚度的测试仪器计数率可以达到超过1000CPS在

X荧光镀层测厚仪进行有害物质的检测

X荧光镀层测厚仪进行有害物质的检测  1.1样品制备:散装样品均质的各种块,板或铸件,可以利用适当的工具有一定的样本量样本。照射的样本应该是比较光滑和平整。这种分析是材料:测试样品的电影的时候,要注意均匀的薄膜厚度和组成,我们通常膜平铺覆盖到一定厚度的测试仪器计数率可以达到超过1000CPS在通常特

浅析手持x射线荧光光谱仪检测的基本过程

 手持x射线荧光光谱仪是一种原子发射方法,在这方面与光发射光谱,ICP和中子活化分析(γ光谱)相似。X射线管通过产生入射X射线(一次X射线),来激发被测样品。 受激发的样品中的每一种元素会放射出二次X射线(又叫X荧光),并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些

能量色散X射线荧光光谱仪介绍

能量色散X射线荧光光谱仪是根据元素辐射x射线荧光光子能量不同,经探测器接收后用脉冲高度分析器区别,进行元素鉴定,根据分析线脉冲高度分布的积分强度进行元素定量的分析方法。能量色散X射线荧光光谱仪主要用于固体、粉末或液体物质的元素分析,被广泛用于许多部门和领域,已成为理化检测、野外现场分析和过程控制分析

波长色散X射线荧光光谱仪相关介绍

X射线荧光光谱仪根据分光方式不同,可分为波长色散和能量色散X射线荧光光谱仪两大类;根据激发方式又可细分为偏振光、同位素源、同步辐射和粒子激发X射线荧光光谱仪;根据X射线的出射、入角还可有全反射、掠出入射X射线荧光光谱仪等。波长色散XRF光谱仪利用分光晶体的衍射来分离样品中的多色辐射,能量色散光谱仪则

能量色散X射线荧光光谱仪介绍

能量色散X射线荧光光谱仪是根据元素辐射x射线荧光光子能量不同,经探测器接收后用脉冲高度分析器区别,进行元素鉴定,根据分析线脉冲高度分布的积分强度进行元素定量的分析方法。能量色散X射线荧光光谱仪主要用于固体、粉末或液体物质的元素分析,被广泛用于许多部门和领域,已成为理化检测、野外现场分析和过程控制分析

X射线荧光光谱仪准直器介绍

  准直器是由许多间距精密的平滑的薄金属片叠积而成,它分为初级准直器和次级准直器。初级准直器安装在样品和晶体之间,次级准直器安装在探测器的前面,初级准直器使样品发射出的X射线荧光通过准直器变成平行光束照射到晶体上,经晶体分光后再通过次级准直器准直后进入探测器,初级准直器对光谱仪分辨率起着重要作用。 

波长色散X射线荧光光谱仪的新进展

X射线荧光光谱分析在20世纪80年代初已是一种成熟的分析方法,是实验室、现场分析主、次量和痕量元素的方法之一。X射线荧光光谱仪(XRF)是利用原级X射线或其他光子源激发待测物质中的原子,使之产生荧光(次级X射线),从而进行物质成分分析的仪器。X射线荧光光谱仪又称XRF光谱仪,有波长色散型和能量色散型

概述X射线荧光光谱仪X射线的产生

  根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。  1、连续谱线  连续光谱是由高能的带电粒子撞击金属靶面时受

X射线荧光光谱仪的概述

  自1895年伦琴发现X射线以来,X射线及相关技术的研究和应用取得了丰硕成果。其中,1910年特征X射线光谱的发现,为X射线光谱学的建立奠定了基础;20世纪50年代商用X射线发射与荧光光谱仪的问世,使得X射线光谱学技术进入了实用阶段;60年代能量色散型X射线光谱仪的出现,促进了X射线光谱学仪器的迅

X射线荧光光谱仪的简介

  X射线荧光光谱仪(X-ray Fluorescence Spectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-ray fluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

  X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水

X射线荧光光谱仪的原理

X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集

原子荧光光度计与X射线荧光光谱仪的区别

  有一些人把原子荧光光度计与X射线荧光光谱仪误认为是同一种仪器,其实它们是有区别的。首先我们分别了解下它们的定义。   1、原子荧光光度计是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中原子化而形成

x射线荧光光谱仪简介

  x射线荧光光谱仪提供了一种最简单,最准确,最经济的分析方法,可用于确定多种类型材料的化学成分。它是无损且可靠的,不需要或只需很少的样品制备,适用于固体,液体和粉末状样品。它可以用于从钠到铀的多种元素,并提供亚ppm级以下的检测限;它也可以轻松,同时地测量高达100%的浓度。