关于正温度系数热敏电阻实验的介绍

实验表明,在工作温度范围内,PTC热敏电阻的电阻-温度特性可近似用实验公式表示: R(T)=R(T0)*exp(Bp(T-T0)) 式中R(T)、R(T0)表示温度为T、T0时电阻值,Bp为该种材料的材料常数。 PTC效应起源于陶瓷的粒界和粒界间析出相的性质,并随杂质种类、浓度、烧结条件等而产生显著变化。最近,进入实用化的热敏电阻中有利用硅片的硅温度敏感元件,这是体型小且精度高的PTC热敏电阻,由n型硅构成,因其中的杂质产生的电子散射随温度上升而增加,从而电阻增加。 PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC热敏电阻。PTC热敏电阻在工业上可用作温度的测量与控制,也用于汽车某部位的温度检测与调节,还大量用于民用设备,如控制瞬间开水器的水温、空调器与冷库的温度,利用本身加热作气体分析和风速机等方面。下面简介一例对加热器、马达、变压器、大功率晶体管等电器的加热和过热保护方面的应用。 ......阅读全文

关于正温度系数热敏电阻实验的介绍

  实验表明,在工作温度范围内,PTC热敏电阻的电阻-温度特性可近似用实验公式表示:  R(T)=R(T0)*exp(Bp(T-T0))  式中R(T)、R(T0)表示温度为T、T0时电阻值,Bp为该种材料的材料常数。  PTC效应起源于陶瓷的粒界和粒界间析出相的性质,并随杂质种类、浓度、烧结条件等

正温度系数热敏电阻的简介

  正温度系数(PTC)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、 Bi、 Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO

正温度系数热敏电阻的结构原理介绍

  钛酸钡晶体属于钙钛矿型结构,是一种铁电材料,纯钛酸钡是一种绝缘材料.在钛酸钡材料中加入微量稀土元素,进行适当热处理后,在居里温度附近,电阻率陡增几个数量级,产生PTC效应,此效应与BaTiO3晶体的铁电性及其在居里温度附近材料的相变有关。钛酸钡半导瓷是一种多晶材料,晶粒之间存在着晶粒间界面。该半

正温度系数热敏电阻(PTC)的检测

  1.常温检测(室内温度接近25℃);将两表笔接触PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。  2.加温检测;在常温测试正常的基础上,即可进行第二步测试—加温检测,将一热源(例如电烙铁)靠近PTC热

关于负温度系数热敏电阻的基本介绍

  负温度系数(NTC)热敏电阻是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料。该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛

负温度系数热敏电阻(NTC)的检测

  1.测量标称电阻值Rt:用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同,即根据NTC热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值。但因NTC热敏电阻对温度很敏感,故测试时应注意以下几点:ARt是生产厂家在环境温度为25℃时所测得的,所以用万用表测量Rt时,亦应在环境温

锂电池正温度系数端子的介绍

  正温度系数端子可防止电池电流过大。正常温度下,正温度系数端子的电阻很小,但是当温度达到120℃左右时,电阻突然增大,导致电流迅速下降。当温度下降以后,正温度系数端子的电阻又变小,又可以正常充放电。  常见元件组分为导电性填料与聚合物的复合。

锂离子电池的正温度系数端子介绍

正温度系数端子(PTC端子)是导电性填料与聚合物的复合材料;正温度系数端子可防止电池电流过大。正常温度下,正温度系数端子的电阻很小,但是当温度达到120℃左右时,电阻突然增大,导致电流迅速下降。当温度下降以后,正温度系数端子的电阻又变小,又可以正常充放电。

关于临界温度热敏电阻的介绍

  临界温度热敏电阻(CTR,即 Critical Temperature Resistor)具有负电阻突变特性,在某一温度下,电阻值随温度的增加激剧减小,具有很大的负温度系数。构成材料是钒、钡、锶、磷等元素氧化物的混合烧结体,是半玻璃状的半导体,也称CTR为玻璃态热敏电阻。骤变温度随添加锗、钨、钼

新疆理化所负温度系数热敏电阻材料研究取得进展

  负温度系数(NTC)热敏电阻的主要特点是温度灵敏度高、响应快、性能稳定,还具有体积小、结构简单的优点,因此被广泛用于测温、控温、温度补偿、抑制浪涌电流等设备中。   YCrO3钙钛矿材料由于其磁电性质,已被广泛用于高温电极、热电、磁电材料等领域。其中,正交晶系钙钛矿结构的YCr1-xMnxO3

高B值负温度系数热敏电阻材料的制备方法获发明ZL

  近日,由中科院新疆理化所技术研究所科研人员完成的“一种高B值负温度系数热敏电阻材料的制备方法”获国家发明ZL授权(ZL号:ZL 201210250492.0)。   负温度系数热敏电阻是一种电阻值随温度的升高而减小的电子元件,热敏电阻具有灵敏度高、互换性好、受磁场影响小、可靠性高、响应时间

超宽温区负温度系数热敏电阻材料及器件的研究与开发

  8月16日,乌鲁木齐市科技局组织有关专家对中科院新疆理化技术研究所主持完成的“超宽温区负温度系数热敏电阻材料及器件的研究与开发”进行了现场验收。   该项目研究成果获得的宽温区材料阻值分布相对集中,在超宽温区内(25℃-1100℃)具有良好的阻温特性关系,且老化性能稳定;由该材料

关于热敏电阻的合金热敏电阻材料介绍

  合金热敏电阻材料亦称热敏电阻合金。这种合金具有较高的电阻率,并且电阻值随温度的变化较为敏感,是一种制造温敏传感器的良好材料。作为温敏传感器的热敏电阻合金性能要求如下:  (1)足够大的电阻率;  (2)相当高的电阻温度系数;  (3)具有接近于实验材料线膨胀系数;  (4)小的应变灵敏系数;  

关于热敏电阻的检测介绍

  检测时,用万用表欧姆档(视标称电阻值确定档位,一般为R×1挡),具体可分两步操作:首先常温检测(室内温度接近25℃),用鳄鱼夹代替表笔分别夹住PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。其次加温检测

关于热敏电阻的应用介绍

  热敏电阻也可作为电子线路元件用于仪表线路温度补偿和温差电偶冷端温度补偿等。利用NTC热敏电阻的自热特性可实现自动增益控制,构成RC振荡器稳幅电路,延迟电路和保护电路。在自热温度远大于环境温度时阻值还与环境的散热条件有关,因此在流速计、流量计、气体分析仪、热导分析中常利用热敏电阻这一特性,制成专用

关于热敏电阻合金的介绍

  热敏电阻合金已开始日益广泛地用于温度的监测和控制。如在环境监测、食品的长期储存、生物工程以及尖端军事工程等方面都获得了广泛的应用 。  热敏电阻合金一般均具有较高的电阻率和电阻温度系数,因此可以制成小型化的高灵敏度的测温传感器。如箔式应变片式测温传感器就是一种理想的结构件温度测量元件。此外热敏电

新疆理化所发明含铅四元系负温度系数热敏电阻器

  近日,由中科院新疆理化技术研究所科研人员完成的“一种含铅四元系负温度系数热敏电阻器”获得国家发明ZL授权(ZL号:ZL 201110144168.6)。   负温度系数(NTC)热敏电阻具有高灵敏度、微型的特点,在许多家电、信息行业需求极大,但传统的热敏电阻器的参数指标已不能满足目前市场需

热敏电阻温度计概述

  热敏电阻温度计是一种可量度体温和室温的温度计,它有一个安培计/电流计和电源。  原理  当温度升高时,电热调节器(温度计的探测器)所探测到的电流会増加,电阻会减少。当电流増加,温度也表示会升高;当电阻増加,温度也表示会降低。  半导体热敏电阻 RT 是一种阻值随温度改变发生显著变化的敏感元件。在

关于热敏电阻的基本特征介绍

  热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(ºC)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温

热敏电阻的金属热敏电阻材料的介绍

  此类材料作为热电阻测温、限流器以及自动恒温加热元件均有较为广泛的应用。如铂电阻温度计、镍电阻温度计、铜电阻温度计等。其中铂测温传感器在各种介质中(包括腐蚀性介质),表现出明显的高精度和高稳定的特征。但是,由于铂的稀缺和价格昂贵而使它们的广泛应用受到一定的限制。铜测温传感器较便宜,但在腐蚀性介质中

温度系数振荡器

  1、温度系数振荡器是指一种振荡器,它的振荡频率与温度之间有一个特定的关系,即不同的温度对应不同的振荡频率。反之,测量出振荡器的输出频率,就可测量出温度值。  2、高温度系数振荡器:它的振荡频率受温度的影响很大,温度稍有变化,频率就会变化很多,即对温度敏感,多用于温度传感器。  3、低温度系数振荡

热敏电阻概述

  热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于

热敏电阻的基本信息介绍

  热敏电阻是一种传感器电阻,其电阻值随着温度的变化而改变。按照温度系数不同分为正温度系数热敏电阻(PTC thermistor,即 Positive Temperature Coefficient thermistor)和负温度系数热敏电阻(NTC thermistor,即 Negative Te

关于正癸醇的用途介绍

  主要用于配制橙子、柠檬、椰子和什锦水果等型香精。GB 2760—96规定为允许使用的香料。  用于制造表面活性剂、增塑剂、合成纤维、消泡剂、除草剂、润滑油添加剂和香料等的原料,也用作油墨等的溶剂。  微量用于金合欢、桂花、紫罗兰、红玫瑰、橙花、黄水仙、鸢尾、紫丁香、茉莉及甜橙花等香精配方。在低档

关于热敏电阻的型号和发展的相关介绍

  热敏电阻符号是PTC,阻值随温度的变化而变化,有正温度型的负温度型,压敏电阻阻值随压力的变化而变化,高,中,低压压敏电阻:  产品主要有MYN型,MY31型以及MYG型三大型号  热敏电阻合金已开始日益广泛地用于温度的监测和撞制。如在环境监测、食品的长期储存、生物工程以及尖端军事工程等方面都获得

热敏电阻的半导体热敏电阻材料的介绍

  这类材料有单晶半导体、多晶半导体、玻璃半导体、有机半导体以及金属氧化物等。它们均具有非常大的电阻温度系数和高的电阻率,用其制成的传感器的灵敏度也相当高。按电阻温度系数也可分为负电阻温度系数材料和正电阻温度系数材料.在有限的温度范围内,负电阻温度系数材料a可达-6*10-2/℃,正电阻温度系数材料

材料的摩擦系数与温度

1、摩擦系数    摩擦系数是对两表面摩擦力的一种量度,它表征了材料的摩擦行为。薄膜表面的摩擦系数取决于薄膜表面的粘着性(表面张力和结晶度)、添加剂(爽滑剂、颜料等)、以及表面抛光。在进行以下操作工序时需要严格控制材料的摩擦系数,如当薄膜越过自由转辊、袋成型、产品缠绕膜、以及包装袋及其它容器的堆放。

热敏电阻器的介绍及测量方法

  热敏电阻器是一种对温度变化敏感的电阻器,又称半导体热敏电阻器,热敏电阻器的基本特点是当温度变化时其阻值也会随着发生显着的变化,其伏安特性曲线呈线性。   热敏电阻器主要可以分为两种,种是正温度系数热敏电阻器,这种电阻主要是由钛酸钡掺和稀土元素烧结而成,阻值会随着温度的升高而增加;此款电阻器一般

罗卓尼克温湿度传感器组成及正确使用分享

  HC2A-S温湿度传感器核心元件是温度传感器(热敏电阻)和湿度传感器(湿敏电阻)。   热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC

热敏电阻技术术语相关介绍

  1. 居里点  “POSISTOR®”在达到某一温度前,电阻值是恒定的,一旦超过这一温度,电阻值也会急剧上升。这一电阻值的变化点成为“居里点 (也称为居里温度) ”,村田制作对其的定义是25℃时电阻值的2倍电阻值所处的温度。  2. 温度补偿  是由温度变化导致仪器、测量器等产生误差,经过特别设