关于多倍体的形成方式介绍
多倍体的形成有2种方式,一种是本身由于某种未知的原因而使染色体复制之后,细胞不随之分裂,结果细胞中染色体成倍增加,从而形成同源多倍体(autopolyploid);另一种是由不同物种杂交产生的多倍体,称为异源多倍体(allopolyploid)。 同源多倍体是比较少见的。20世纪初,荷兰遗传学家研究一种月见草(夜来香)(Oenotheralamarckiana)的遗传,发现一株月见草的染色体增加了一倍,由原来的24个(2n)变成了48个(4n),成了四倍体植物。这个四倍体植物与原来的二倍体植物杂交所产生的三倍体植物是不育的(减数分裂时染色体不配对)。因此这个四倍体植物便是一个新种。Hugo de Vries给这个新种定名为 Oenothe。......阅读全文
关于多倍体的形成方式介绍
多倍体的形成有2种方式,一种是本身由于某种未知的原因而使染色体复制之后,细胞不随之分裂,结果细胞中染色体成倍增加,从而形成同源多倍体(autopolyploid);另一种是由不同物种杂交产生的多倍体,称为异源多倍体(allopolyploid)。 同源多倍体是比较少见的。20世纪初,荷兰遗传学
多倍体的形成方式
多倍体的形成有2种方式,一种是本身由于某种未知的原因而使染色体复制之后,细胞不随之分裂,结果细胞中染色体成倍增加,从而形成同源多倍体(autopolyploid);另一种是由不同物种杂交产生的多倍体,称为异源多倍体(allopolyploid)。同源多倍体是比较少见的。20世纪初,荷兰遗传学家研究一
多倍体的形成过程和方式
多倍体的形成有2种方式,一种是本身由于某种未知的原因而使染色体复制之后,细胞不随之分裂,结果细胞中染色体成倍增加,从而形成同源多倍体(autopolyploid);另一种是由不同物种杂交产生的多倍体,称为异源多倍体(allopolyploid)。同源多倍体是比较少见的。20世纪初,荷兰遗传学家研究一
关于复合薄膜的形成方式介绍
由两层或更多层形成的复合薄膜必须要如一张薄膜一样不可分开。这不仅涉及到两张薄膜间的粘合剂.还与墨膜有关。粘合剂是合成产品大多数粘合剂是双组分的聚氨酯(PU)粘合剂.钻合过程的化学反应使粘合剂固化。在基材表面的粘合剂主要是一个物理过程只有一小部分是化学过程这时粘合剂的成分与塑料薄膜中的成分钻合在一
同源多倍体的形成原因
在自然条件下,同源三倍体的出现,大多是由于减数分裂不正常,由未经减数分裂的配子与正常的配子结合而形成的。香蕉是天然的三倍体植物。它一般只有果实,种子退化,以营养体进行无性繁殖。人们采用人工的方法,在同种植物中将同源四倍体与正常二倍体杂交,可以获得同源三倍体植物。三倍体植物由于染色体的配对发生紊乱,不
关于自由基的形成方式的介绍
在一个化学反应中,或在外界(光、热、辐射等)影响下,分子中共价键断裂,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基。 有机化合物(Organic compounds)发生化学反应时,总是伴随着一部分共价键(covalent bond
关于下肢静脉血栓形成检查的方式介绍
1.多普勒血流和体积描记仪检查 为无创性检查方法,有助于明确患肢血液回流和供血状况。 2.核素静脉造影 从双足背静脉注射核素标记锝(Tc)人体白蛋白微粒后作静脉显像,以观察小腿,大腿,盆腔,腹部静脉显像情况,“热点”表示新鲜血栓所在。 3.放射性纤维蛋白原试验 应用I标记的人体纤维蛋白
关于中国多倍体研究的介绍
中国农业科学家培育的小黑麦也是异源多倍体新种。小麦有42个染色体(6n=42),黑麦有14个染色体(2n=14)。小麦与黑麦杂交产生含21+7个染色体的杂种。由于染色体不能配对,杂种不育。但是用秋水仙素处理,使染色体数目加倍(42+14),这样就成了有繁殖能力的异源八倍体的小黑麦新种了。 关于
关于异源多倍体的介绍
异源多倍体(allopolyploid)生物学名词,指不同物种杂交产生的杂种后代经过染色体加倍形成的多倍体。常见的多倍体植物大多数属于异源多倍体,例如,小麦、燕麦、棉、烟草、苹果、梨、樱桃、菊、水仙、郁金香等。对应的有同源多倍体,同一物种经过染色体加倍形成的多倍体,称为同源多倍体。
关于人造多倍体的基本介绍
通过实验,可以人为地培育出同源多倍体植株,例如,西瓜是二倍体,具有11对(22条)染色体(2n=22)。在西瓜幼苗时期,用秋水仙素处理幼苗的生长尖,破坏分裂细胞的纺锤体,使细胞内染色体增加了一倍,因而得到具有四倍染色体(4n)的西瓜植株。四倍体西瓜可以结实,产生种子,可以培育成四倍体西瓜品系。四
关于颅内静脉系统血栓形成的检查方式介绍
必要的有选择性的检查依据可能的病因选择。 1.血常规、血电解质检查 2.血糖、免疫项目、脑脊液检查 (1)头部CT和CTA检查CT特征性改变为静脉窦内异常高密度灶或脑静脉内高密度灶即条索征,增强扫描后上矢状窦后可见一空的三角形影,即δ征。CT改变还包括脑水肿、出血及梗死和脑室系统改变的影像
凋亡小体的形成方式介绍
(1) 通过发芽脱落机制:凋亡细胞内聚集的染色质块,经核碎裂形成大小不等的染色质块,然后整个细胞通过出芽、起泡等方式形成一个球形的膜包小体,内含胞质、细胞器和核碎片,脱落形成凋亡小体。(2) 通过自噬体形成机制:凋亡细胞内线粒体、内质网等细胞器和其它胞质成分一起被内质网膜包裹形成自噬体,与凋亡细胞膜
关于同源多倍体的基本介绍
同源多倍体(autopolyploids) 指增加的染色体组来自同一物种,一般是由二倍体的染色体直接加倍产生的。同一物种经过染色体加倍形成的多倍体,称为同源多倍体。同源多倍体在植物界是比较常见的。由于大多数植物是雌雄同株的,两性配子可能有同时发生异常减数分裂的机会,使配子中染色体数目不减半,然后
关于多倍体的基本信息介绍
多倍体:英文名称:polyploid 体细胞中含有三个或三个以上染色体组的个体.多倍体在生物界广泛存在,常见于高等植物中,由于染色体组来源不同,可分为同源多倍体和异源多倍体。 这是物种形成的另一种方式,是一种只经过一二代就能产生新物种的方式。由于多倍体生物一旦形成,它和原来的物种就发生生殖隔离
同源多倍体的形成原因是什么?
在自然条件下,同源三倍体的出现,大多是由于减数分裂不正常,由未经减数分裂的配子与正常的配子结合而形成的。香蕉是天然的三倍体植物。它一般只有果实,种子退化,以营养体进行无性繁殖。人们采用人工的方法,在同种植物中将同源四倍体与正常二倍体杂交,可以获得同源三倍体植物。三倍体植物由于染色体的配对发生紊乱
同源多倍体染色体形成原因
在自然条件下,同源三倍体的出现,大多是由于减数分裂不正常,由未经减数分裂的配子与正常的配子结合而形成的。香蕉是天然的三倍体植物。它一般只有果实,种子退化,以营养体进行无性繁殖。人们采用人工的方法,在同种植物中将同源四倍体与正常二倍体杂交,可以获得同源三倍体植物。三倍体植物由于染色体的配对发生紊乱,不
子囊孢子的形成方式介绍
子囊菌形成子囊的方式不一,最简单的是由两个营养细胞结合后直接形成子囊。例如啤酒酵母,两个单核而且是单倍体的营养细胞结合后,经质配、核配而成为一个二倍体的细胞。此细胞可进行普通的出芽生殖而产生许多细胞,然而它们都是二倍体细胞。这种二倍体细胞在一定条件下,其细胞核进行两次分裂,其中一次为减数分裂。因
静脉血栓形成检查方式介绍
1、实验室检查 凝血机制检查:据报告测定血浆中存在于凝集的血小板中的血栓球蛋白可以诊断深静脉血栓形成。测定血小板、凝血因子和纤维蛋白溶解系统活性,有助于判断凝血亢进状态,但不能直接判定血栓的存在。 2、其他辅助检查 (1)Ⅰ或Ⅰ纤维蛋白原扫描检查静脉注射Ⅰ或Ⅰ纤维蛋白原,该物质参与凝血,故
关于异源多倍体的发展前景介绍
现代,异源多倍体已是植物常规育种的一种手段,人们用秋水仙素加倍染色体取代自发加倍。育种者的目的是将两个亲本的优良性状进行重组,此是用传统杂交的方法所不能达到的。例如小黑麦(Triticale)双二倍体是由普通小麦(Triticum 2n=6x=42)和黑麦(Secale 2n=2x=14)重组而
结晶的形成方式
结晶分两种,一种是降温结晶,另一种是蒸发结晶。降温结晶:首先加热溶液,蒸发溶剂成饱和溶液,此时降低热饱和溶液的温度,溶解度随温度变化较大的溶质就会呈晶体析出,叫降温结晶。蒸发结晶:蒸发溶剂,使溶液由不饱和变为饱和,继续蒸发,过剩的溶质就会呈晶体析出,叫蒸发结晶。
关于核苷的形成介绍
核酸中的核苷由嘌呤或嘧啶碱与核糖或脱氧核糖缩合而成。核糖分子中的碳原子(C1)与嘧啶分子中的氮原子(N1)或嘌呤分子中的氮原子(N9)之间形成苷键,生成N-糖苷,即嘧啶或嘌呤的呋喃核糖苷,称为核糖核苷。2-脱氧核糖分子中的碳原子(C1)与嘧啶分子中的氮原子(N1)或嘌呤分子中的氮原子(N9)之间
关于胆红素的形成介绍
肝、脾、骨髓等单核吞噬细胞系统将衰老的和异常的红细胞吞噬,分解血红蛋白,生成和释放游离胆红素,这种胆红素是非结合性的(未与葡萄糖醛酸等结合)、脂溶性的,在水中溶解度很小,在血液中与血浆白蛋白结合。由于其结合很稳定,并且难溶于水,因此不能由肾脏排出。胆红素定性试验呈间接阳性反应。故称这种胆红素为未
概述血栓形成的检查方式
1.实验室检查 凝血机制检查:据报告测定血浆中存在于凝集的血小板中的血栓球蛋白可以诊断深静脉血栓形成。测定血小板、凝血因子和纤维蛋白溶解系统活性,有助于判断凝血亢进状态,但不能直接判定血栓的存在。 2.其他辅助检查 (1)Ⅰ或Ⅰ纤维蛋白原扫描检查静脉注射Ⅰ或Ⅰ纤维蛋白原,该物质参与凝血,故
泡沫细胞的形成方式
当低密度脂蛋白穿过动脉内膜进入血管壁之间时,胆固醇会在那里堆积。当胆固醇堆积足够时,血管内膜的内皮细胞会释放激素招引单核细胞,单核细胞进而分化为巨噬细胞。巨噬细胞吞噬了被自己产生的自由基氧化的胆固醇并试图把脂肪消化掉。在巨噬细胞中堆积的脂肪使细胞成为泡沫细胞。
关于胆汁形成的内容介绍
新合成及再循环的胆汁酸被分泌至胆管以防止肝内高浓度梯度的胆汁淤积。胆汁酸的主动运输是调节胆汁酸形成及流动的一个重要因素。胆汁酸的分泌也高度影响着胆固醇、磷脂、胆红素分泌入胆汁。胆汁酸主动运输所产生的渗透压导致水和电解质分泌入胆管增加,从而使胆汁流过胆管的量增加。
关于痱子的形成病因介绍
痱子是夏季或炎热环境下常见的表浅性、炎症性皮肤病。因在高温闷热环境下,大量的汗液不易蒸发,使角质层浸渍肿胀,汗腺导管变窄或阻塞,导致汗液滞留、汗液外渗周围组织,形成丘疹、水疱或脓疱,好发于皱襞部位。 由于环境中气温高、湿度大,出汗过多,不易蒸发,汗液使表皮角质层浸渍,致使汗腺导管口变窄或阻塞,
关于血栓形成的背景介绍
静脉血栓症有两种:一是血栓性静脉炎,它是指炎症为首发而血栓形成是继发的。另一个是静脉血栓形成,它是指血栓形成为首发现象,静脉壁的炎症过程是继发的。但以下肢深静脉血栓形成最常见。老年人不仅发病率高,而且易产生致命性肺栓塞,值得重视。
关于AMPA受体的形成介绍
AMPA受体是由GluR1-4 (GluRA-D) 4个亚基组成的四异聚体,其形成起始于粗面内质网各个亚基的合成,每个亚基都有1个大的N端、3个跨膜区域、1个形成孔的发夹结构和1个位于胞质侧的C端。成年海马AMPA受体主要由GluR1和GluR2或GluR2和 GluR3所组成的异聚体构成,而G
关于基因污染的形成介绍
20世纪70年代基因工程技术兴起时,基因重组实验必须在“负压”实验室进行。为了防止基因重组的生物当时主要是微生物不致进入人体或逃逸到外界,实验室设立了各种等级的物理屏障和生物屏障。虽然以后对非病原体基因工程实验的规定有所放宽,但有关生物安全的原则不变。各国政府对于基因重组实验颁布有相应的操作规程
关于牙菌斑的形成过程介绍
牙菌斑,即“细菌社区”的建立、成熟需要经历三个阶段: 首先唾液中的营养物质吸附在牙齿表面,构成“社区”肥沃的“土壤”,即获得性薄膜形成。这个过程在刚清洁过的牙面上,数分钟内便可形成,1-2小时迅速增厚。 “土壤”形成之后,便可吸引细菌来定居,同时为细菌提供营养,即细菌粘附和共聚。首先会有先驱