关于基因调控的基本介绍

生物体内控制基因表达的机制。基因表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在3个水平上,即: ①DNA修饰水平、RNA转录的调控、和mRNA翻译过程的控制; ②微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的; ③多细胞生物的基因调控是细胞分化、形态发生和个体发育的基础,这类调控一般是长期的,而且往往是不可逆的。基因调控的研究有广泛的生物学意义,是发生遗传学和分子遗传学的重要研究领域。......阅读全文

关于基因调控的基本介绍

  生物体内控制基因表达的机制。基因表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在3个水平上,即:  ①DNA修饰水平、RNA转录的调控、和mRNA翻译过程的控制;  ②微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;  ③多细胞

关于基因调控的基本信息介绍

  基因调控,生物体内控制基因表达的机制。表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在三个水平上,即  ①DNA水平上的调控、转录控制和翻译控制;  ②微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;  ③多细胞生物的基因调控是

关于基因表达调控的基本内容介绍

  基因表达调控是生物体内基因表达的调节控制,使细胞中基因表达的过程在时间、空间上处于有序状态,并对环境条件的变化作出反应的复杂过程。基因表达的调控可在多个层次上进行,包括基因水平、转录水平、转录后水平、翻译水平和翻译后水平的调控。基因表达调控是生物体内细胞分化、形态发生和个体发育的分子基础。

关于组蛋白修饰—基因调控的基本介绍

  基因表达是一个受多因素调控的复杂过程.组蛋白是染色体基本结构-核小体中的重要组成部分,其N-末端氨基酸残基可发生乙酰化、甲基化、磷酸化、泛素化、多聚ADP糖基化等多种共价修饰作用.组蛋白的修饰可通过影响组蛋白与DNA双链的亲和性,从而改变染色质的疏松或凝集状态,或通过影响其它转录因子与结构基因启

关于基因调控的内容介绍

  表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在三个水平上,即  ①DNA水平上的调控、转录控制和翻译控制;  ②微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;  ③多细胞生物的基因调控是细胞分化、形态发生和个体发育的基础,这

关于基因调控的简史介绍

  1900年F.迪纳特发现在含有乳糖和半乳糖的培养液中培养的酵母菌细胞中有分解半乳糖的酶,但是在葡萄糖的培养液中培养的酵母菌细胞中没有相应的酶。1930年H.卡尔斯特伦在关于细菌的研究中也发现类似的现象,并把生物细胞中的酶区分为组成酶和适应酶(亦称诱导酶)两类,前者是在任何情况下都存在的酶,后者是

关于真核生物的基因调控—翻译控制的基本介绍

  真核生物的翻译控制的主要形式是控制mRNA的稳定性。mRNA5′端的加帽作用以及它的3′端的多聚A的加尾作用都有助于 mRNA分子的稳定。在某些真核生物中mRNA进入细胞质以后并不立即作为模板进行蛋白质合成,而是与一些蛋白质结合形成RNA蛋白质(RNP)颗粒,在这种状态的mRNA半衰期可以延长。

关于基因调控的研究方法介绍

  1、筛选突变型  这是在原核生物中广泛应用的方法,例如在乳糖操纵子的研究中筛选失去了基因调控能力的组成型,包括调节基因发生突变和操纵基因发生突变的突变型,以及筛选即使有乳糖或其他诱导物存在的情况下仍然不能合成β-半乳糖糖苷酶的超阻遏型等等。  2、激素诱导  在高等的真核生物中,除了离体培养的体

关于基因表达的转录调控介绍

  基因表达的转录调控可分为三种主要途径:1)遗传调控(转录因子与靶标基因的直接相互作用);2)调控转录因子与转录机制相互作用,3)表观遗传调控(影响转录的DNA结构的非序列变化)。  通过转录因子直接调控靶标DNA表达是最简单和最直接的转录调控改变转录水平的方法。基因的编码区周围通常都具有几个蛋白

关于真核生物的基因调控—翻译后控制的基本介绍

  翻译后控制的事例不多。一般认为脑垂体后叶细胞产生的促肾上腺皮质激素和脂肪酸释放激素是由同一原始翻译产物经不同的加工而形成的。迄今为止对于真核生物基因调控作用的了解仍然处在探索的阶段,特别是对于高等动植物的基因调控过程了解得更少,还不能形成一个完整的模式。1972年美国学者E.戴维森和R.J.布里

关于生物体内控制基因表达的机制—基因调控的基本介绍

  1、基因调控,生物体内控制基因表达的机制。表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在三个水平上,即①DNA水平上的调控、转录控制和翻译控制;  2、微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;  3、多细胞生物的基因调

关于基因调控的实用意义介绍

  细菌通过基因调控可以避免合成过量的氨基酸、核苷酸等物质。人们要利用细菌来生产这些物质,就必须使它们丧失有关的基因调控作用。在一般的野生型细菌中,阻遏蛋白和氨基酸等代谢最终产物结合后便作用于操纵基因而使转录停止。有两类突变型可以使细菌处于消阻遏状态而合成过量的氨基酸等物质。一类是操纵基因突变型,由

关于基因表达的翻译调控和翻译后调控的介绍

  1、基因表达的翻译调控  翻译调控的效果不如转录调控或调控mRNA的稳定性,但也偶尔得到使用。抑制蛋白质翻译是毒素和抗生素的主要作用目标,因此它们可以通过超越其正常的基因表达控制来杀死细胞。蛋白质合成抑制剂包括抗生素新霉素和毒素蓖麻毒素。  2、基因表达的翻译后调控  翻译后修饰(PTM)是对蛋

关于真核生物的基因调控—基因诱导的介绍

  细菌的代谢作用直接受环境的影响,它的基因调控的信号常来自环境因素。多细胞的高等生物的代谢作用较少为环境所影响,它的基因调控的信号常来自体内的激素。  在摇蚊(Chironomus)和果蝇(Drosophila)等双翅目昆虫的唾腺中的巨大的多线染色体上可以看到一条条各有特征的横纹。在幼虫和蛹期的各

关于真核生物的基因调控—基因扩增的介绍

  另一种改变基因数量而调节基因表达的方式称为基因扩增。基因扩增是细胞短期内大量产生出某一基因拷贝的一种非常手段。某些脊椎动物和昆虫的卵母细胞能够专一性地增加编码核糖体RNA的DNA(rDNA)序列。例如非洲爪蟾(Xenopus laevis)的卵母细胞中的rDNA的拷贝数可由平时的 1500急剧增

基因调控的介绍

  基因表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在三个水平上,即①DNA水平上的调控、转录控制和翻译控制;②微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;③多细胞生物的基因调控是细胞分化、形态发生和个体发育的基础,这类调控一

关于基因调控的原核生物的介绍

  DNA水平上的基因调控鼠伤寒沙门氏菌(Salmoella typhimurium)有两个编码鞭毛蛋白的基因H1和H2,这两个基因并不紧密连锁。H2 的一边有一个调节基因( H1 repressor gene,rh1),它所编码的阻遏蛋白作用于 H1而使它不表达。H2基因的另一边有一段经常发生倒位

关于原核生物的基因表达调控介绍

  原核生物的基因表达调控虽然比真核生物简单,然而也存在着复杂的调控系统,如在转录调控中就存在着许多问题:如何在复杂的基因组内确定正确的转录起始点?如何将DNA的核苷酸按着遗传密码的程序转录到新生的RNA链中?如何保证合成一条完整的RNA链?如何确定转录的终止?  上述问题决定于DNA的结构、RNA

关于断裂基因的调控序列种类介绍

  ①在5′端转录起始点上游约20~30个核苷酸的地方,有TATA框(TATA box)。TATA框是一个短的核苷酸序列,其碱基顺序为TATAATAAT。TATA框是启动子中的一个顺序,它是RNA聚合酶的重要的接触点,它能够使酶准确地识别转录的起始点并开始转录。当TATA框中的碱基顺序有所改变时,m

关于真核生物基因表达调控的介绍

  真核生物基因表达调控与原核生物有很大的差异。原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征是能在特定时间和特定的细胞中激活特定的基因,

关于结构基因的基本介绍

  结构基因是编码蛋白质或RNA的基因。细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或者都不表达。结构基因编码大量功能各异的蛋白质,其中有组成细胞和组织器官基本成分的结构蛋白、有催化活性的酶和各种调节蛋白等。

关于src基因的基本介绍

  src基因(sarcoma gene)即鸡肉瘤病毒(RSV)基因组中的基因,可使鸡产生肉瘤。是第一个鉴定的病毒癌基因。  1970年,Peter Vogt分离到一种Rous 病毒的突变体,该突变病毒能够感染细胞并进行复制,但是不能引起细胞转化并致癌。由于该突变体,只是丧失了将正常细胞转化为癌细胞

关于重叠基因的基本介绍

  重叠基因是在1977年发现的。早在1913年A.H.斯特蒂文特已在果蝇中证明了基因在染色体上作线状排列,20世纪50年代对基因精细结构和顺反位置效应等研究的结果也说明基因在染色体上是一个接着一个排列而并不重叠。但是1977年F.桑格在测定噬菌体ΦX174的DNA的全部核苷酸序列时,却意外地发现基

关于标记基因的基本介绍

  标记基因,原本是基因工程的专属名词,但是它已经成为一种基本的实验工具,广泛应用于分子生物学、细胞生物学、发育生物学等方面的研究。  标记基因是一种已知功能或已知序列的基因,能够起着特异性标记的作用。在基因工程意义上来说,它是重组DNA载体的重要标记,通常用来检验转化成功与否;在基因定位意义上来说

关于基因转录的基本介绍

  基因转录是在细胞核和细胞质内进行的。它是指以DNA的一条链为模板,按照碱基互补配对原则,在RNA聚合酶作用下合成RNA的过程。基因转录有正调控和负调控之分。  如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白

关于基因家族的基本介绍

  基因家族(gene family),是来源于同一个祖先,由一个基因通过基因重复而产生两个或更多的拷贝而构成的一组基因,它们在结构和功能上具有明显的相似性,编码相似的蛋白质产物, 同一家族基因可以紧密排列在一起,形成一个基因簇,但多数时候,它们是分散在同一染色体的不同位置,或者存在于不同的染色体上

关于基因剪接的基本介绍

  基因剪接是通过一些酶学操作使一条DNA分子与另一条DNA分子相连。即在mRNA成熟期,切除基因的内含子,连接基因的外显子的过程,称为基因剪接。而天然基因的某些片段被合成的DNA链所取代或连成整体的过程称为基因剪辑。一个基因为它的等位基因所替换,而其他基因则保持不变称为基因置换。

关于基因起源的基本介绍

  基因就是编译氨基酸的密码子,因此,密码子的起源就是基因的起源。除了少数的不同之外,地球上已知生物的遗传密码均非常接近;因此根据演化论,遗传密码应在生命历史中很早期就出现。现有的证据表明遗传密码的设定并非是随机的结果,对此有以下的可能解释: [6]  韦斯(Carl Richard Woese)认

关于跳跃基因的基本介绍

  跳跃基因或转座子:一段可以从原位上单独复制或断裂下来,环化后插入另一位点,并对其后的基因起调控作用的DNA序列。 美国约翰斯·霍普金斯大学的科学家已经成功地将一种普通的人类"跳跃基因"转化成一种运动速度比普通老鼠和人类细胞中的跳跃基因快几百倍的超级跳跃基因。

关于自杀基因的基本介绍

  自杀基因(suicide gene),是指将某些病毒或细菌的基因导入靶细胞中,其表达的酶可催化无毒的药物前体转变为细胞毒物质,从而导致携带该基因的受体细胞被杀死,此类基因称为自杀基因。  应用自杀基因常用来治疗肿瘤和感染性疾病。例如将在肝癌细胞中可表达AF基因的调控区与水痘一带状疮疹病毒中的胸苷