腺苷化反应和tRNA装载

这一过程是ATP和氨基酸反应最终生成2Pi、氨基酸(AA)-AMP的过程。氨基酸的羟基中的氧原子除了和C、H原子分别形成共价键之外,还具有独立的2个电子对。由氨基酸的羟基向三磷酸腺苷的第一个磷酸发起攻击,在保留第一个高能磷酸键的前提下,使PPi脱离,随后形成2Pi。 这个化学过程可简要概括如下: AA + ATP → PPi + AA-AMP PPi → 2Pi 总式:AA + ATP → 2PPi + AA-AMP 特别值得注意的是,在这个反应中,三磷酸腺苷内的高能磷酸键得以保留。 tRNA装载过程是AA-AMP和tRNA发生反应最终形成AA-tRNA的过程。其化学本质是tRNA受体臂上的3'端羟基-OH攻击AA-AMP上连接P原子和C原子的O原子,最终形成装载完毕的tRNA。通过这种方式装载完毕的tRNA依然保留了一个高能键。高能键的保留对于后续反应的发生相当重要。 这两部反应是由氨酰-tRNA合成......阅读全文

腺苷化反应和tRNA装载

  这一过程是ATP和氨基酸反应最终生成2Pi、氨基酸(AA)-AMP的过程。氨基酸的羟基中的氧原子除了和C、H原子分别形成共价键之外,还具有独立的2个电子对。由氨基酸的羟基向三磷酸腺苷的第一个磷酸发起攻击,在保留第一个高能磷酸键的前提下,使PPi脱离,随后形成2Pi。  这个化学过程可简要概括如下

翻译的生化基础

翻译的化学本质是单个氨基酸脱水缩合形成肽链,这一过程需要多种酶的参与。而在体内,多种酶参与的多种化学反应组成了翻译的生物化学途径。就化学层面来看,翻译主要涉及到三个化学步骤:氨基酸的腺苷化(Amino Acid Adenylation)、tRNA装载(tRNA charging)、肽键的形成。腺苷化

催化酶的结构基础

参与翻译生化反应的有多种酶,但其核心生化反应主要由两类酶参与:催化腺苷化反应和tRNA装载的氨酰-tRNA合成酶、催化肽键合成的核糖体核酶。下面将进一步探讨这两种酶的结构生物学基础,以及它们确保反应准确发生的校正机制。氨酰-tRNA合成酶氨酰-tRNA合成酶有四个结构域和三个活性位点。由于每种tRN

氨酰tRNA合成酶的合成反应和过程

氨酰-tRNA合成酶(Aminoacyl-tRNA synthases )是一类参与将氨基酸结合到其对应的tRNA上的过程的酶  。氨酰-tRNA合成酶参与的合成分两步进行。第一步是氨酰-tRNA合成酶识别它所催化的氨基酸以及另一底物ATP,在氨酰-tRNA合成酶的催化下,氨基酸的羧基与AMP上的磷

关于氨酰tRNA合成酶的介绍

  氨酰-tRNA合成酶有四个结构域和三个活性位点。由于每种tRNA只能结合特定氨基酸,所以氨酰-tRNA合成酶必须确保tRNA和氨基酸之间的正确配对。  其四个结构域分别结合tRNA受体臂(第1结构域)、反密码子区域(第2结构域,其中1个碱基用来被识别)、ATP和正确AA(第3结构域)、错误AA(

概述翻译的生化基础

  翻译的化学本质是单个氨基酸脱水缩合形成肽链,这一过程需要多种酶的参与。而在体内,多种酶参与的多种化学反应组成了翻译的生物化学途径。就化学层面来看,翻译主要涉及到三个化学步骤:氨基酸的腺苷化(Amino Acid Adenylation)、tRNA装载(tRNA charging)、肽键的形成。

转移核糖核酸的二级结构介绍

tRNA分子均可排布成三叶草模型的二级结构。它由3个环,即D环〔因该处二氢尿苷酸(D)含量高〕、反密码环(该环中部为反密码子)和TΨC环〔因绝大多数tRNA在该处含胸苷酸(T)、假尿苷酸(Ψ)、胞苷酸(C)顺序〕,四个茎,即D茎(与D环联接的茎)、反密码茎(与反密码环联接)、TΨC茎(与 TΨC环联

关于转运RNA的二级结构的介绍

  tRNA分子均可排布成三叶草模型的二级结构。它由3个环,即D环〔因该处二氢尿苷酸(D)含量高〕、反密码环(该环中部为反密码子)和TΨC环〔因绝大多数tRNA在该处含胸苷酸(T)、假尿苷酸(Ψ)、胞苷酸(C)顺序〕,四个茎,即D茎(与D环联接的茎)、反密码茎(与反密码环联接)、TΨC茎(与 TΨC

简述转移核糖核酸的一级结构和二级结构

  一级结构  自1965年R.W.霍利等首次测出酵母丙氨酸tRNA的一级结构即核苷酸排列顺序到1983年已有200多个tRNA(包括不同生物来源、不同器官、细胞器的同功受体tRNA以及校正tRNA)的一级结构被阐明。按照A-U、G-C以及G-U碱基配对原则,除个别例外,  二级结构  tRNA分子

转移核糖核酸的功能特点

主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫起始

概述转运RNA的功能介绍

  主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫

转运RNA的功能

主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫起始

简述转移核糖核酸的功能

  主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫

转移核糖核酸的功能

主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫起始

转移核糖核酸功能介绍

主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫起始

转运RNA的功能

  主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫

转运RNA的功能简介

  主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫

转运RNA的结构介绍

转运RNA分子由一条长70~90个核苷酸并折叠成三叶草形的短链组成的。上图中有两种不同的分子,苯丙氨酸tRNA(4tna)和天冬氨酸tRNA(2tra)。tRNA链的两个末端在图上方指出的L形结构的末端互相接近。氨基酸在箭头示意的位置被连接。在这条链的中央形成了L形臂,如图《tRNA的三叶草结构》下

转运RNA的结构介绍

转运RNA分子由一条长70~90个核苷酸并折叠成三叶草形的短链组成的。上图中有两种不同的分子,苯丙氨酸tRNA(4tna)和天冬氨酸tRNA(2tra)。tRNA链的两个末端在图上方指出的L形结构的末端互相接近。氨基酸在箭头示意的位置被连接。在这条链的中央形成了L形臂,如图《tRNA的三叶草结构》下

转移RNA的功能特点

转移RNA(tRNA)在蛋白质合成过程中负责转运氨基酸、解读mRNA遗传密码。tRNA占细胞总RNA的10%~15%,绝大多数位于细胞质中。tRNA由Crick于1955年提出其存在,Zamecnik和 Hoagland于1957年鉴定。 1.tRNA一级结构具有以下特点:①是一类单链小分子RNA,

转移RNA的结构特点

转移RNA(tRNA)在蛋白质合成过程中负责转运氨基酸、解读mRNA遗传密码。tRNA占细胞总RNA的10%~15%,绝大多数位于细胞质中。tRNA由Crick于1955年提出其存在,Zamecnik和 Hoagland于1957年鉴定。1.tRNA一级结构具有以下特点:①是一类单链小分子RNA,长

细胞化学基础转移RNA

转移RNA(tRNA)在蛋白质合成过程中负责转运氨基酸、解读mRNA遗传密码。tRNA占细胞总RNA的10%~15%,绝大多数位于细胞质中。tRNA由Crick于1955年提出其存在,Zamecnik和 Hoagland于1957年鉴定。1.tRNA一级结构具有以下特点:①是一类单链小分子RNA,长

转移RNA的功能结构特点

转移RNA(tRNA)在蛋白质合成过程中负责转运氨基酸、解读mRNA遗传密码。tRNA占细胞总RNA的10%~15%,绝大多数位于细胞质中。tRNA由Crick于1955年提出其存在,Zamecnik和 Hoagland于1957年鉴定。1.tRNA一级结构具有以下特点:①是一类单链小分子RNA,长

核糖核酸的种类转移RNA

转移RNA(tRNA)在蛋白质合成过程中负责转运氨基酸、解读mRNA遗传密码。tRNA占细胞总RNA的10%~15%,绝大多数位于细胞质中。tRNA由Crick于1955年提出其存在,Zamecnik和 Hoagland于1957年鉴定。1.tRNA一级结构具有以下特点: ①是一类单链小分子RNA,

转移RNA的结构特点

1.tRNA一级结构具有以下特点: ①是一类单链小分子RNA,长73~95nt(共有序列76nt),沉降系数4S。 ②是含稀有碱基最多的RNA,含7-15个稀有碱基(占全部碱基的15%~20%),位于非配对区。 ③5′末端碱基往往是鸟嘌呤。 ④3'端是CCA序列,其中的腺苷酸常称为A76,其

转移核糖核酸的结构

转运RNA分子由一条长70~90个核苷酸并折叠成三叶草形的短链组成的。上图中有两种不同的分子,苯丙氨酸tRNA(4tna)和天冬氨酸tRNA(2tra)。tRNA链的两个末端在图上方指出的L形结构的末端互相接近。氨基酸在箭头示意的位置被连接。在这条链的中央形成了L形臂,如图《tRNA的三叶草结构》下

甲硫氨酸tRNA

中文名称甲硫氨酸tRNA英文名称methionine tRNA定  义真核生物的一种起始tRNA,携带甲硫氨酸进入核糖体,进入新生肽链的N端。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

氨酰tRNA

中文名称氨酰tRNA英文名称aminoacyl tRNA定  义转移核糖核酸的3′端通过酯键与氨基酸连接生成,进入核糖体的A位参与蛋白质生物合成。由氨酰tRNA合成酶催化tRNA与活化氨基酸(即氨酰AMP)反应得到。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

tRNA的结构

1.tRNA结构保守:70-80个碱基。2.二级结构:三叶草。3.五个主要臂:(1)接受臂:携带氨基酸;(2)TΨC臂;(3)反密码子臂;(4)双氢尿嘧啶臂(DHU);(5)附加臂:大小反映了整个tRNA分子的大小,根据其大小,tRNA分为两类:第Ⅰ类tRNA,3/4 tRNA只有3-5个碱基的附加

转运RNA的结构

  转运RNA分子由一条长70~90个核苷酸并折叠成三叶草形的短链组成的。上图中有两种不同的分子,苯丙氨酸tRNA(4tna)和天冬氨酸tRNA(2tra)。tRNA链的两个末端在图上方指出的L形结构的末端互相接近。氨基酸在箭头示意的位置被连接。在这条链的中央形成了L形臂,如图下方所示,露出了形成反