关于受体酪氨酸激酶的基本介绍

受体酪氨酸激酶(receptor protein tyrosine kinase, RPTKs) RPTKs是最大的一类酶联受体, 它既是受体,又是酶, 能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RPTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、含有酪氨酸蛋白激酶(PTK)活性的细胞内结构域。 受体酪氨酸激酶(RPTK)是许多多肽生长因子,细胞因子和激素的高亲和性细胞表面受体。在人类基因组中鉴定的90种独特的酪氨酸激酶基因中,有58种编码受体酪氨酸激酶蛋白。受体酪氨酸激酶不仅被证明是正常细胞过程的关键调节因子,而且还在许多类型的癌症的发展和恶化中起关键作用。 受体酪氨酸激酶的突变会激活一系列信号级联反应,这些级联反应对蛋白质表达有很多影响。受体酪氨酸激酶为酪氨酸激酶中较大的一个蛋白质家族,此类蛋白的特点是具有疏水性的穿膜区,不具有跨膜结构域的为非受体酪氨酸激酶。......阅读全文

关于受体酪氨酸激酶的基本介绍

  受体酪氨酸激酶(receptor protein tyrosine kinase, RPTKs)  RPTKs是最大的一类酶联受体, 它既是受体,又是酶, 能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RPTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、

关于受体酪氨酸激酶的介绍

  受体酪氨酸激酶(receptor protein tyrosine kinases,RPTKs)的胞外区是结合配体结构域,配体是可溶性或膜结合的多肽或蛋白类激素,包括胰岛素和多种生长因子。胞内段是酪氨酸蛋白激酶的催化部位,并具有自磷酸化位点。  配体(如EGF)在胞外与受体结合并引起构象变化,导

关于受体酪氨酸激酶的调控的介绍

  受体酪氨酸激酶(RTK)途径受各种正反馈回路的严格调节。 因为RTK协调多种细胞功能,例如细胞增殖和分化,所以必须对它们进行调节以防止细胞功能发生严重异常,例如癌症和纤维化。  1、蛋白酪氨酸磷酸酶  蛋白质酪氨酸磷酸酶(PTP)是一组具有磷酸酪氨酸特异性磷酸水解酶活性的催化结构域的酶。PTP能

受体酪氨酸激酶的基本简介

受体酪氨酸激酶(receptor protein tyrosine kinase, RPTKs)RPTKs是最大的一类酶联受体, 它既是受体,又是酶, 能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RPTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、含有酪氨

受体酪氨酸激酶的基本信息

中文名称受体酪氨酸激酶外文名称receptor tyrosine kinase, RTKs RTKs最大的一类酶联受体RTKs类型表皮生长因子

受体酪氨酸激酶的基本信息

中文名称受体酪氨酸激酶外文名称receptor tyrosine kinase, RTKs RTKs最大的一类酶联受体RTKs类型表皮生长因子

受体酪氨酸激酶的基本信息

中文名称受体酪氨酸激酶外文名称receptor tyrosine kinase, RTKs RTKs最大的一类酶联受体RTKs类型表皮生长因子

受体酪氨酸激酶的基本信息

中文名称受体酪氨酸激酶外文名称receptor tyrosine kinase, RTKs RTKs最大的一类酶联受体RTKs类型表皮生长因子

受体酪氨酸激酶的基本信息

受体酪氨酸激酶(receptor protein tyrosine kinase, RPTKs)RPTKs是最大的一类酶联受体, 它既是受体,又是酶, 能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RPTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、含有酪氨

受体酪氨酸激酶的基本内容

  受体酪氨酸激酶(receptor protein tyrosine kinase, RPTKs)  RPTKs是最大的一类酶联受体, 它既是受体,又是酶, 能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RPTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、

受体酪氨酸激酶的基本信息

受体酪氨酸激酶(receptor protein tyrosine kinase, RPTKs)RPTKs是最大的一类酶联受体, 它既是受体,又是酶, 能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RPTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、含有酪氨

受体酪氨酸激酶的基本信息

中文名称受体酪氨酸激酶外文名称receptor tyrosine kinase, RTKs RTKs最大的一类酶联受体RTKs类型表皮生长因子

关于酪氨酸激酶的基本介绍

  一、简介  分布在细胞质膜表面的酶偶联型受体的一种,酪氨酸激酶可分为三类:受体酪氨酸激酶,胞质酪氨酸激酶,和核内酪氨酸激酶。  二、分类  酪氨酸激酶可分为三类:  ①受体酪氨酸激酶,为单次跨膜蛋白,在脊椎动物中已发现50余种;  ②胞质酪氨酸激酶,如Src家族、Tec家族、ZAP70家族、JA

非受体酪氨酸激酶的基本信息

中文名称非受体酪氨酸激酶英文名称nonreceptor tyrosine kinase定  义一类本身没有受体结构或不与受体偶联的酪氨酸激酶。与受体酪氨酸激酶相对。应用学科细胞生物学(一级学科),细胞化学(二级学科)

非受体酪氨酸激酶的基本信息

中文名称非受体酪氨酸激酶英文名称nonreceptor tyrosine kinase定  义一类本身没有受体结构或不与受体偶联的酪氨酸激酶。与受体酪氨酸激酶相对。应用学科细胞生物学(一级学科),细胞化学(二级学科)

关于Fc受体的基本介绍

  Fc受体为对免疫球蛋白Fc部分c末端的受体。免疫球蛋白(Ig)与抗原结合后,抗体的Fc段变构,与细胞膜上的Fc受体结合,产生各种生物效应,抗原-抗体复合物对细胞的作用都是通过Fc受体的介导,因此Fc受体在免疫功能及其调节中具有非常重要的作用。每一类Ig都有其相对应的Fc受体。

关于毒素受体的基本介绍

  发现很多毒素也是通过与细胞膜上的受体相结合后才产生效应的。如霍乱毒素是霍乱弧菌产生的外毒素,分子量为84000,由A、B二种亚单位组成。A亚单位有两条肽链A1和A2,由一对二硫键联接。亚单位B与细胞膜上的受体相结合。亚单位A1则具有激活膜上腺苷酸环化酶的作用。  霍乱毒素的受体是一种神经节苷脂,

关于AMPA受体的基本介绍

  AMPA 受体(α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体,AMPAR)介导中枢神经系统快速兴奋性突触传递,其在突触后膜的动态表达与长时程增强(Long-term potentiation,LTP)、长时程抑制(Long-term depression,LTD)的诱发和维持有关,参与调节学

关于阿片受体的基本介绍

  阿片受体广泛分布,在神经系统的分布不均匀。在脑内、丘脑内侧、脑室及导水管周围灰质阿片受体密度高,这些结构与痛觉的整合及感受有关。边缘系统及蓝斑核阿片受体的密度最高,这些结构涉及情绪及精神活动。与缩瞳相关的中脑盖前核,与咳嗽反射、呼吸中枢和交感神经中枢有关的延脑的孤束核,与胃肠活动(恶心、呕吐反射

受体酪氨酸激酶的调控相关介绍

  受体酪氨酸激酶(RTK)途径受各种正反馈回路的严格调节。因为RTK协调多种细胞功能,例如细胞增殖和分化,所以必须对它们进行调节以防止细胞功能发生严重异常,例如癌症和纤维化。  蛋白酪氨酸磷酸酶  蛋白质酪氨酸磷酸酶(PTP)是一组具有磷酸酪氨酸特异性磷酸水解酶活性的催化结构域的酶。PTP能够以正

关于LIF的受体的基本介绍

  ILF受体α链为低亲和力受体,其结构属于红细胞生成素受体家族成员,含有2个该家族特征性结构域。gp130是LIF受体的另一个亚单位,与LIF受体α链共同组成高亲和力受体。LIF受体分布较广泛,如脂肪细胞、成骨细胞、神经细胞、胚胎癌细胞、胚胎干细胞、M1白血病细胞以及活化的巨噬细胞等。

受体酪氨酸激酶

受体酪氨酸激酶(RTK)是许多多肽生长因子、细胞因子和激素的高亲和力细胞表面受体。在人类基因组中鉴定的90个独特的酪氨酸激酶基因中,有58个编码受体酪氨酸激酶蛋白。受体酪氨酸激酶已被证明不仅是正常细胞过程的关键调节剂,而且在多种癌症的发展和进展中也具有关键作用。受体酪氨酸激酶的突变导致一系列信号级联

酪氨酸激酶的受体型

  受体酪氨酸激酶(receptor protein tyrosine kinases,RPTKs)的胞外区是结合配体结构域,配体是可溶性或膜结合的多肽或蛋白类激素,包括胰岛素和多种生长因子。胞内段是酪氨酸蛋白激酶的催化部位,并具有自磷酸化位点。  配体(如EGF)在胞外与受体结合并引起构象变化,导

受体酪氨酸激酶RPTKs的主要类型的基本信息

I(EGF受体家族,又称ErbB受体家族):EGFR, ERBB2, ERBB3, ERBB4II(胰岛素受体家族,Insulin receptor family):INSR,IGFRIII(血小板衍生生长因子受体家族,PDGF receptor family):PDGFRα, PDGFRβ, M-

受体酪氨酸激酶的信号转导的介绍

  通过多种方式,细胞外配体结合通常会引起或稳定受体二聚化。这使得每个受体单体的细胞质部分中的酪氨酸被其伴侣受体反式磷酸化,从而通过质膜传播信号。 [3] 活化受体内特定酪氨酸残基的磷酸化为含有SH2结构域和磷酸酪氨酸结合(PTB)结构域的蛋白提供了结合位点。 [6-7] 含有这些结构域的蛋白质包括

关于膜受体的基本信息介绍

  细胞膜受体(cell membrane receptor)是细胞表面的一种或一类分子,它们能识别、结合专一的生物活性物质(称配体),生成的复合物能激活和启动一系列物理化学变化,从而导致该物质的最终生物效应。细胞环境中各种因素的变化,是通过细胞膜受体的作用而影响细胞内的生理过程发生相应的变化。

关于腺嘌呤核苷受体的基本介绍

  腺嘌呤核苷受体,是哺乳动物体内的一种分子,是可以突破血脑屏障的分子。腺嘌呤核苷受体能对大分子进入大脑进行控制,当腺嘌呤核苷受体在组成血脑屏障的细胞上被激活时,就会建立起一个进入血脑屏障的通道。  血脑屏障是介于血液和脑组织之间的屏障结构,它由构成大脑血管的特定细胞组成,其对血液中的物质进入大脑具

关于过敏毒素受体的基本介绍

  过敏毒素作用于许多细胞,但最重要的乃多形核白细胞(PMN)。一旦配体与受体结合后,细胞表面便有动力学的重分布。配体受体交联复合物经内转,胞内加工,紧接着便是一系列胞内激活(如Ca2+流动,酶性颗粒释放,膜脂重排),导致细胞粘附,趋化。晚期配体内转后则导致配体降解以及细胞表面受体的“下向调节”。

关于NMDA受体的基本信息介绍

  NMDA受体(N-methyl-D-aspartic acid receptor)即为N-甲基-D-天冬氨酸受体,是离子型谷氨酸受体的一个亚型,分子结构复杂,药理学性质独特,不仅在神经系统发育过程中发挥重要的生理作用,如调节神经元的存活,调节神经元的树突、轴突结构发育及参与突触可塑性的形成等。而

关于5羟色胺受体的基本介绍

  5-羟色胺受体,也被称为血清素受体或5-HT受体,是一群于中枢神经系统中央处和末梢神经系统周边出现的G蛋白偶联受体及配体门控离子通道。它们同时调节兴奋性和抑制性神经传导物质的传递。  血清素受体可分为七个亚科 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, 5