类器官构建的三要素
细胞分化物理特征关键信号路径的激活/抑制原始细胞的类型及条件......阅读全文
类器官构建的三要素
细胞分化物理特征关键信号路径的激活/抑制原始细胞的类型及条件
类器官的构建与制备
类器官的形成:类器官可以由两种类型细胞产生,一是多能干细胞(PSCs),例如胚胎干细胞(ESCs)、诱导干细胞(iPSCs),或器官限制性成体干细胞(ASCs)。这些细胞被培养在一个特定的环境中,允许它们遵循根深蒂固的基因指令,自x行组织成功能性的3D结构。从各种组织中培养类器官的方法是相似的。干细
如何利用肿瘤组织细胞构建肿瘤类器官?
利用肿瘤组织细胞构建肿瘤类器官通常包括以下步骤:肿瘤组织获取从患者手术切除的肿瘤组织、活检样本或转移性肿瘤病灶中获取新鲜的肿瘤组织。组织处理将肿瘤组织进行清洗,去除血液和坏死部分。使用酶消化法(如胶原酶、胰蛋白酶等)或机械解离法将组织分解成单个细胞或小细胞团。细胞筛选与培养通过细胞滤网过滤,去除未消
科学家构建新型体外血管化胎盘类器官
近日,中科院大连化学物理研究所研究员秦建华团队利用人诱导多能干细胞(hiPSC)建立了一种三维培养体系,可在体外形成具有血管样结构的胎盘类器官,模拟人早期胎盘的发育特征。相关成果发表在Bioengineering & Translational Medicine上。 胎盘是妊娠期维持母体和胎儿健
科学家构建新型体外血管化胎盘类器官
近日,中科院大连化学物理研究所研究员秦建华团队利用人诱导多能干细胞(hiPSC)建立了一种三维培养体系,可在体外形成具有血管样结构的胎盘类器官,模拟人早期胎盘的发育特征。相关成果发表在Bioengineering & Translational Medicine上。 胎盘是妊娠期维持母体和胎儿
类器官
以下是一些可能有助于提高类器官的结构和功能完善程度的方法:优化培养条件:包括培养基成分、生长因子的组合和浓度、细胞外基质的选择和优化等。例如,通过筛选和调整各种细胞因子的比例,更好地模拟体内细胞生长的微环境。引入血管化和神经支配:开发新的技术手段来构建类器官中的血管网络和神经连接,以增强营养物质供应
类器官(organoids):器官芯片技术培育人胰岛类器官
近日,中国科学院大连化学物理研究所研究员秦建华团队利用器官芯片技术培育人多能干细胞衍生的胰岛类器官取得新进展,相关成果发表在器官芯片领域刊物Lab on a chip上,并被选为封面文章。 类器官(organoids)是一种通过干细胞自组织方式形成的多细胞三维复杂结构,它能够在体外模拟具有来源
最大规模的BTC患者来源的类器官库构建成功
近日,中山大学附属第一医院肿瘤科副主任医师许丽霞与精准医学研究院名誉院长于君及研究员李晓星合作,成功构建了目前最大规模的来源于胆道系统肿瘤(BTC)患者肿瘤组织的类器官生物库,进行有效的药物筛选,揭示了人源性胆道系统肿瘤类器官对不同药物反应的特征。相关成果发表于《细胞报告医学》。 BTC是预后
类器官的作用
类器官在多个领域发挥着重要作用:医学研究方面:疾病模型构建:可以模拟各种疾病的发生和发展过程,如肿瘤类器官能用于研究癌症的发病机制、药物反应等。例如,肺癌类器官有助于了解肺癌细胞的侵袭和转移特性。药物筛选和测试:能够更准确地预测药物的疗效和毒性,减少动物实验的需求。像针对神经退行性疾病的药物,可以先
类器官的优势
类器官的优势在于:疾病模型构建:可以用于研究各种疾病,特别是癌症,更好地模拟肿瘤的异质性和微环境。药物筛选:为药物研发和测试提供更接近体内真实情况的模型,提高药物筛选的效率和准确性。发育生物学研究:有助于了解器官的发育机制和细胞命运决定。
类器官的特点
三维结构:与传统的二维细胞培养相比,更接近体内器官的空间结构。部分功能模拟:能够展现出一定程度上类似于体内器官的生理功能。类器官的构建通常基于干细胞,包括胚胎干细胞、诱导多能干细胞和成体干细胞。例如,利用肠道干细胞可以培养出肠道类器官。
类器官的概念
类器官(Organoid)是指在体外培养条件下,由干细胞或祖细胞分化形成的具有三维结构和一定生理功能的类似于器官的细胞集合体。
类器官的来源
类器官的来源主要包括以下几种:胚胎干细胞(Embryonic Stem Cells,ESCs):来源于早期胚胎的内细胞团,具有全能性,能够分化为身体的各种细胞类型。诱导多能干细胞(Induced Pluripotent Stem Cells,iPSCs):通过对成体细胞(如皮肤细胞、血细胞)进行重编
安捷伦《类器官模型构建与高通量筛选方案》亮相慕尼黑生化展
2023 年 7 月 13 日,第十一届慕尼黑上海分析生化展在国家会展中心(上海)圆满落幕,作为亚洲具有影响力的分析、实验室技术、诊断和生化技术领域的专业博览会,本次大会吸引了 1200 + 参展企业,超过 5 万人参会。在此次盛会上,安捷伦细胞分析事业部携《类器官模型构建与高通量筛选方案》亮相 2
新发现|科学家成功构建胃癌类器官生物样本库
类器官是人体干细胞在三维环境下培养所产生的组织,几乎所有上皮及神经等细胞均可以培养成类器官。这些类器官可以作为人体健康和疾病的良好研究模型,对新药研发、肿瘤精准治疗等都有重要应用价值。图1. 胃癌类器官(上)及正常胃类器官(下)在光镜下的形态。(图片来自Gut杂志) 早在几年前,其他研究者已经
类器官技术的应用
发育生物学研究:帮助了解器官的发育过程和机制。疾病病理学研究:例如肿瘤类器官可以保持起源组织的基因组、转录组、形态学和功能特征,有助于研究疾病的发生发展机制。精准医疗:基于患者自身的肿瘤类器官进行药物反应测试,为个性化治疗方案的确定提供依据。药物筛选和药效试验:能更好地了解真实器官对药物的反应,筛选
类器官的应用介绍
疾病研究:帮助理解疾病的发生机制,如肿瘤类器官用于研究癌症的发展和转移。药物测试:评估药物的疗效和毒性,为药物研发提供更可靠的模型。
类器官的来源介绍
类器官是在体外培养环境中生成的三维细胞聚集体,其具有类似于体内器官的一些结构和功能特征。类器官的来源主要有以下几种:胚胎干细胞(Embryonic Stem Cells,ESCs):胚胎干细胞具有多能性,能够分化为各种类型的细胞,并形成类器官。例如,在特定的培养条件下,胚胎干细胞可以分化为肠道类器官
类器官的发展历程
1907年,Henry Van 发现物理分离的海绵细胞可以重现聚集,自行组成一个新的功能完善的海绵。在接下来的几十年里,脊椎动物中也发现了相似的细胞分离再聚合现象,例如1944年Holtfreter的两栖动物肾组织实验和1960年Weiss的禽类胚胎实验。1961年 Piercehe和 Verney
类器官当前成就
类器官研究的当前成就已经非常显著,并且在多个方面推动了生物医学科学的发展。以下是一些关键的成就: 多种类器官的成功构建: 科学家们已经能够从人类和动物的干细胞和组织源性细胞中构建出多种类型的类器官,包括肠道、胃、肝脏、胰腺、肾脏、心脏和大脑等。 疾病模型的建立: 类器官技术被广泛应用于模
类器官技术简介
类器官技术 是一种新兴的、具有巨大潜力的生物技术。它是指在体外利用干细胞或特定组织的细胞,通过特定的培养条件和生物材料的支持,诱导其形成具有三维结构和一定功能的类似于体内器官的细胞聚集体。类器官技术的关键步骤包括:细胞获取:通常从胚胎干细胞、诱导多能干细胞或成体组织中的干细胞分离得到起始细胞。培养体
什么是类器官?
类器官属于三维(3D)细胞培养物,包含其代表器官的一些关键特性。此类体外培养系统包括一个自我更新干细胞群,可分化为多个器官器官特异性的细胞类型,与对应的器官拥有类似的空间组织并能够重现对应器官的部分功能,从而提供一个高度生理相关系统。
类器官技术步骤
类器官技术是一种在体外培养环境中构建具有三维结构和部分功能的微型器官样组织的方法。它具有以下几个关键步骤:细胞获取:通常从胚胎干细胞、诱导多能干细胞或成体干细胞中获取起始细胞。培养体系建立:使用特定的培养基和添加物,为细胞提供适宜的生长环境。诱导分化:通过添加特定的生长因子、化学物质或物理信号,引导
什么是类器官?
类器官(Organoid)是指在体外培养条件下,由干细胞或祖细胞分化形成的具有三维结构和一定生理功能的类似于器官的细胞集合体。
什么是类器官?
类器官和真正的器官非常相似,从专业角度阐释,类器官是体外的3维立体微型细胞簇,高度模拟体内相应器官的结构和功能。通俗来讲就是类器官是一个体外构成的具有自我更新,自我组织能力的微型器官,与真实的器官具有相似的空间组织并且能够执行原始器官功能。
类器官技术简介
类器官技术是一种利用细胞培养技术构建人工器官的方法。它通过将不同类型的细胞种植在三维支架上,使其形成类似于真实器官的结构和功能。类器官通常来源于干细胞(多能干细胞、胎儿或成人来源的),也可以由组织衍生细胞培养而成,这些细胞包括正常干细胞/祖细胞、分化细胞和癌细胞等。其组成类器官的细胞可衍生自诱导多能
如何培养类器官?
培养类器官通常需要以下步骤:细胞来源选择可以使用干细胞(如胚胎干细胞、诱导多能干细胞)或成体组织中的祖细胞。这些细胞通常需要经过分离和纯化处理。培养基质准备常用的基质包括细胞外基质成分,如基质胶(Matrigel)等。为细胞提供生长和附着的支架。培养基配制根据要培养的类器官类型,添加特定的生长因子、
科学家构建脑类器官模型,为研究人类大脑提供新窗口
·“目前尚无人源性SpV模型,这限制了对人体内SpV核团发育、功能及其病理机制的研究。因此,构建SpV类器官将为研究人类大脑提供新颖且重要的(有时甚至是唯一的)窗口。例如,如果希望在人源遗传背景下研究SpV核团,目前尚无其他有效的方法供选择。”脑科学是生命科学研究的重要领域之一,在理解人脑、干预脑疾
类器官培养的技术挑战
培养过程复杂,需要精确控制培养条件和使用特定的生物材料。类器官的成熟度和复杂性仍有限,与真实器官存在一定差距。长期培养的稳定性和可重复性有待提高。