色氨酸操纵子的阻遏作用
Trp合成途径较漫长,消耗大量能量和前体物,如丝氨酸、PRPP、谷氨酰氨等,是细胞内最昂贵的代谢途径之一,因此受到严格调控,其中色氨酸操纵子发挥着关键作用。调控作用主要有三种方式:阻遏作用、弱化作用以及终产物Trp 对合成酶的反馈抑制作用。trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生阻遏蛋白的基因是trpR,该基因距trp operon基因簇很远。它结合于trp 操纵基因特异序列,阻止转录起始。但阻遏蛋白的DNA结合活性受Trp调控,Trp起着一个效应分子的作用,Trp与之结合的动力学常数为1~2 ×10- 5mol·L-1。在有高浓度Trp存在时,阻遏蛋白- 色氨酸复合物形成一个同源二聚体,并且与色氨酸操纵子紧密结合,因此可以阻止转录。阻遏蛋白-色氨酸复合物与基因特异位点结合的能力很强,动力学常数为2 ×10- 10mol·L-1,因此细胞内阻遏蛋白数量仅有20~30分子已可充分发挥作用。当Trp 水平低时,阻遏蛋白以......阅读全文
原核生物基因表达调控大的调节机制有哪些类型
上述问题决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用,在转录调控中,现已搞清楚了细菌的几个操纵子模型,现以乳糖操纵子和色氨酸操纵子为例予以说明。法国巴斯德研究所著名的科学家Jacob和Monod在实验的基础上于1961年建立了乳糖操纵子学说。大肠杆菌乳糖操纵子包括4类基
色氨酸的生理作用
植物色氨酸生成生长素的路线色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径:(1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。(2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱
色氨酸的生理作用
植物色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径:(1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。(2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱氨形成吲哚乙酸。动物色
色氨酸的生理作用
植物色氨酸生成生长素的路线色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径:(1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。(2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱
色氨酸检查作用
丝氨酸能增加大脑皮层中的神经传递质乙酰胆碱的产量,乙酰胆碱与思维、推理和注意力集中有关联。一项临床研究发现,在针对健康人施加压力的实验中,服用磷脂酰丝氨酸的人群对于压力的反应要比其他人群低。磷脂酰丝氨酸主要用于治疗痴呆症(包括阿兹海默症和非阿兹海默症的痴呆)和正常的老年记忆损失。
色氨酸的结构及作用
色氨酸(Trp)色氨酸(C11H12N2O2)是一种必需氨基酸,它在体内能转变为许多生理上重要的活性物质,如5-羟色胺及烟酸的前体,5-羟色胺是人体重要的神经递质。在临床上,色氨酸可用于治疗支气管哮喘,尤其对已确定抗原的青少年哮喘效果较好,对无感染型哮喘也有一定效果。色氨酸还可以抗过敏,对于季节性鼻
色氨酸的简介和作用
色氨酸(Tryptophan)又称β-吲哚基丙氨酸,化学式C11H12N2O2,是人体的必须氨基酸之一。外观为白色或微黄色结晶或结晶性粉末,无臭,味微苦。水中微溶,在乙醇中极微溶解,在氯仿中不溶,在甲酸中易溶,在氢氧化钠试液或稀盐酸中溶解。色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA
简述色氨酸的生理作用
植物 色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径: (1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。 (2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱氨形成
色氨酸的结构特性及作用
色氨酸(Tryptophan)又称β-吲哚基丙氨酸,化学式C11H12N2O2,是人体的必须氨基酸之一。外观为白色或微黄色结晶或结晶性粉末,无臭,味微苦。水中微溶,在乙醇中极微溶解,在氯仿中不溶,在甲酸中易溶,在氢氧化钠试液或稀盐酸中溶解。色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA
关于色氨酸的生理作用介绍
植物 色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径: (1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。 (2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱氨形成
乳糖操纵子的作用机制
抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因转录也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。 [2] 诱导作用:在乳糖存在情况下,乳糖代谢产生异构乳糖(alloLactos
色氨酸试验(TrpT)检查作用
色氨酸试验(TrpT)是脑脊液的一种检查方法,阳性见于结核性脑膜炎,化脓性脑膜炎,脑出血,蛛网膜下腔出血,重症黄疸等。
基因原核表达诱导纯化蛋白包含哪些步骤
E.coli的乳糖操纵子(元)含Z、Y及A三个结构基因,分别编码半乳糖苷酶、透酶和乙酰基转移酶,此外还有一个操纵序列O、一个启动序列P及一个调节基因I。I基因编码一种阻遏蛋白,后者与O序列结合,使操纵子(元)受阻遏而处于关闭状态。在启动序列P上游还有一个分解(代谢)物基因激活蛋白(CAP)结合位点
关于阻遏蛋白的工作原理介绍
阻遏蛋白(repressor protein)是基于某种调节基因所制成的一种控制蛋白质,具有抑制特定基因(群)产生特征蛋白质的作用。 阻遏蛋白(repressor protein)是基于某种调节基因所制成的一种控制蛋白质,在原核生物中具有抑制特定基因(群)产生特征蛋白质的作用。由于它能识别特定
简述阻遏蛋白的工作原理
阻遏蛋白(repressor protein)是基于某种调节基因所制成的一种控制蛋白质,具有抑制特定基因(群)产生特征蛋白质的作用。 阻遏蛋白(repressor protein)是基于某种调节基因所制成的一种控制蛋白质,在原核生物中具有抑制特定基因(群)产生特征蛋白质的作用。由于它能识别特定
操纵基因和调节基因的鉴别
野生型的操纵子以被调节的方式进行表达,调节系统若发生突变可能使表达停止或者在没有诱导物存在时仍然表达。前者称为不可诱导性(uninducible)突变;后者对调节没有反应能力,无论诱导物是否存在都进行表达,故称为组成型突变(constitutive mutants)。操纵子调节系统的成份通过突变已被
操纵基因和调节基因的鉴别
野生型的操纵子以被调节的方式进行表达,调节系统若发生突变可能使表达停止或者在没有诱导物存在时仍然表达。前者称为不可诱导性(uninducible)突变;后者对调节没有反应能力,无论诱导物是否存在都进行表达,故称为组成型突变(constitutive mutants)。操纵子调节系统的成份通过突变已被
关于阻遏物的基本介绍
阻遏物(repressor):基于某种调节基因所制成的一种控制蛋白质,具有抑制特定基因(群)产生特征蛋白质的作用。由于它能识别特定的操纵基因,并与之结合,因而可抑制与这个操纵基因相联系的基因群,也就是操纵子的mRNA合成。在诱导酶中,调节基因的产物具有“活性”,但与诱导物质一经结合即失去活性,因
基因的阻遏物基本原理
阻遏物(repressor):基于某种调节基因所制成的一种控制蛋白质,具有抑制特定基因(群)产生特征蛋白质的作用。由于它能识别特定的操纵基因,并与之结合,因而可抑制与这个操纵基因相联系的基因群,也就是操纵子的mRNA合成。在诱导酶中,调节基因的产物具有“活性”,但与诱导物质一经结合即失去活性,因而也
简述阻遏物蛋白质的基本原理
阻遏物(repressor):基于某种调节基因所制成的一种控制蛋白质,具有抑制特定基因(群)产生特征蛋白质的作用。由于它能识别特定的操纵基因,并与之结合,因而可抑制与这个操纵基因相联系的基因群,也就是操纵子的mRNA合成。在诱导酶中,调节基因的产物具有“活性”,但与诱导物质一经结合即失去活性,因
简述阻遏蛋白的工作原理
阻遏蛋白(repressor protein)是基于某种调节基因所制成的一种控制蛋白质,在原核生物中具有抑制特定基因(群)产生特征蛋白质的作用。由于它能识别特定的操纵基因(即操纵子是阻遏蛋白的结合位点),当操纵序列结合阻遏蛋白时会阻碍RNA聚合酶与启动序列的结合,或使RNA聚合酶不能沿DNA向前
操纵子的功能介绍
控制操纵子基因是属于基因调节的一种,能使生物调控不同基因对环境条件的表现。操纵子调节可以是负向或正向的。负向调节涉及与阻遏基因与操纵基因的结合,以阻止转录。在负向可诱导操纵子中,一个调节的阻遏蛋白质一般会与操纵基因结合,并阻止操纵子中基因的转录。若存在着一个诱导物分子,它会与阻遏蛋白结合,并改变它的
关于操纵子的基因调节的介绍
控制操纵子基因是属于基因调节的一种,能使生物调控不同基因对环境条件的表现。操纵子调节可以是负向或正向的。负向调节涉及与阻遏基因与操纵基因的结合,以阻止转录。 在负向可诱导操纵子中,一个调节的阻遏蛋白质一般会与操纵基因结合,并阻止操纵子中基因的转录。若存在着一个诱导物分子,它会与阻遏蛋白结合,并
关于乳糖操纵子的调控机制介绍
调节乳糖催化酶产生的操纵子就称为乳糖操纵子。其调控机制简述如下: 抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。 诱导作用
一个基因的跨膜蛋白区对原核表达有影响吗
一个基因的跨膜蛋白区对原核表达有影响1、Operon操纵子:一个或几个结构基因与一个调节基因和一个操纵基因,加上启动子构成一个操纵单元,这个单元称为操纵子。在操纵子中,结构基因产生mRNA并作为模板合成蛋白质;而调节基因则产生一种阻遏蛋白与操纵基因相互作用;阻遏蛋白与操纵基因结合从而阻碍了结构基因转
乳糖操纵子的结构特点
细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中。乳
IPTG诱导蛋白表达的原理及方法步骤
E.coli的乳糖操纵子(元)含Z、Y及A三个结构基因,分别编码半乳糖苷酶、透酶和乙酰基转移酶,此外还有一个操纵序列O、一个启动序列P及一个调节基因I。I基因编码一种阻遏蛋白,后者与O序列结合,使操纵子(元)受阻遏而处于关闭状态。在启动序列P上游还有一个分解(代谢)物基因激活蛋白(CAP)结合位点。
反式阻遏的定义
中文名称反式阻遏英文名称trans-repression定 义抑制因子(如转录、翻译抑制因子)等在调控基因表达过程中,由抑制因子直接结合或间接作用,引起基因表达抑制的调控作用。应用学科生物化学与分子生物学(一级学科),总论(二级学科)
概述乳糖操纵子的结构
细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中
化学诱导蛋白的原理是什么
Lac阻遏物是一种具有4个相同亚基的四级结构蛋白,都有一个与诱导剂结合的位点。在没有乳糖存在时,lac操纵子(元)处于阻遏状态,Lac阻遏物(即下图中的阻遏蛋白)能与操纵基因O结合,阻碍RNA聚合酶与P序列结合,阻止了转录的路径,从而抑制转录启动。而当有诱导剂(这里指IPTG)存在时,诱导剂可与阻遏