微波驱动多自由度机器人在威海面世
近日,由哈尔滨工业大学(威海)机器人研究所软体机器人实验室研制的直接利用微波驱动的机器人成功面世,为机器人驱控提供了一种全新的方式。据介绍,该机器人不仅可以直接利用微波驱动,并实现了多自由度机器人的末端轨迹控制,从而赋予机器人一种新的驱控方式,使机器人可工作在其他驱动方式尚不能胜任的一些特种场合,如封闭非透明结构体内部的变形控制、微波消融治疗与机器人的联合工作等场景。微波是指频率在300 MHz-300 GHz之间的电磁波,被广泛用于通信、供能、加热等领域,但尚未有学者研究利用微波直接驱动机器人的相关技术。哈尔滨工业大学(威海)教授赵建文、博士邢志广团队自2019年开始启动利用微波直接驱动机器人的研究,历经3年,终于探索出微波驱动和控制器件变形的基本原理,研制出直接利用微波驱动的机器人。相关研究成果近日在顶刊《Advanced Science》发表。博士研究生李永泽为该文第一作者,赵建文和邢志广为该文的共同通讯作者。该项研究成果......阅读全文
微波驱动多自由度机器人在威海面世
近日,由哈尔滨工业大学(威海)机器人研究所软体机器人实验室研制的直接利用微波驱动的机器人成功面世,为机器人驱控提供了一种全新的方式。据介绍,该机器人不仅可以直接利用微波驱动,并实现了多自由度机器人的末端轨迹控制,从而赋予机器人一种新的驱控方式,使机器人可工作在其他驱动方式尚不能胜任的一些特种场合,如
微波驱动多自由度机器人在威海面世
多自由度机器人可微波驱动 隗海燕供图 近日,由哈尔滨工业大学(威海)机器人研究所软体机器人实验室研制的直接利用微波驱动的机器人成功面世,为机器人驱控提供了一种全新的方式。 据介绍,该机器人不仅可以直接利用微波驱动,并实现了多自由度机器人的末端轨迹控制,从而赋予机器人一种新的
纳米机器人驱动技术提速十万倍
德国慕尼黑工业大学研究人员开发出一种新的纳米机器人电驱动技术,可使纳米机器人在分子工厂像流水线一样以足够快的速度工作,比迄今为止使用的生化过程快10万倍。这项新的研究成果已作为封面文章刊登在19日《科学》杂志上。图片来源网络 目前各发达国家都在竞相为未来的纳米工厂开发新技术,并期望有一天像流水
德国开发新型纳米机器人电驱动技术
德国慕尼黑工业大学和慕尼黑大学的科研人员合作开发出一种新型纳米机器人电驱动技术,据称其较目前通过加酶和DNA链等生化驱动方法快10万倍。相关研究结果于1月19日以封面故事形式发表在国际权威杂志《科学》上。 新的控制技术不仅适合来回移动染料或纳米颗粒,微型机器人的手臂也可对分子施力。研究人员强
肌肉组织驱动的两足机器人问世
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516833.shtm与机器人相比,人类肢体极为灵活,能做出精细动作,并能有效地将能量转化为运动。受人类步态的启发,日本研究人员将肌肉组织和人造材料结合在一起,制造出一款双足生物混合机器人,可行走和旋转。相
我学者研发出液态金属驱动机器人
电影《终结者》中的液态金属机器人“T1000”开启了液态金属在机器人领域应用的梦想之门。记者从中国科学技术大学获悉,该校精密机械与精密仪器系张世武副教授研究团队与其合作者组成的联合研究组,设计了基于镓基室温液态金属的新型机器人驱动器,首次实现了液态金属驱动的功能性轮式移动机器人。该成果日前发表在
研究提出微波驱动催化废塑料回收增值利用策略
回收废弃塑料有助于环境修复和相关产业发展,但现有技术难以直接回收受污染的混杂废塑料,需在回收前对其进行分拣、清洗等预处理。而预处理过程成本高、耗时长和耗能高,同时回收后的塑料通常导致质量降低。相对塑料回收而言,废弃混杂塑料的升级再造策略则为其管理与增值利用带来希望,可将废弃混杂塑料直接转化为烯烃单体
研究提出微波驱动催化废塑料回收增值利用策略
回收废弃塑料有助于环境修复和相关产业发展,但现有技术难以直接回收受污染的混杂废塑料,需在回收前对其进行分拣、清洗等预处理。而预处理过程成本高、耗时长和耗能高,同时回收后的塑料通常导致质量降低。相对塑料回收而言,废弃混杂塑料的升级再造策略则为其管理与增值利用带来希望,可将废弃混杂塑料直接转化为烯烃
磁热联合驱动微型软体机器人研究取得进展
近日,中国科学院沈阳自动化研究所机器人学国家重点实验室微纳米自动化课题组在磁热联合驱动的微型软体机器人研究中取得新进展。科研人员利用4D打印技术制备的软体机器人在近红外光和磁场的联合驱动下,展示了弯曲形变、夹取及搬运功能,在微结构搬运、药物控释等方面展现出重要的应用前景。相关研究成果发表在Com
合同机器人驱动智能文档处理,效率提升超30%
全球经济一体化的背景下,供应链金融的发展对于提高资金利用效率、促进产业链协同具有重要意义。近日,在智能文档处理技术的加持下,合合信息通过合同机器人等产品,对供应链贸易场景下的各类票证、合同进行场景化识别、关键信息抽取与智能审核,提升资金审批效率及放款速度,助力央企保理公司供应链金融管理效率的升级。供
日本科学家研制出肌肉驱动的机器人
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516858.shtm
日本科学家研制出肌肉驱动的机器人
与机器人相比,人的身体更灵活,能够进行精细运动,并能将能量有效转化为运动。日本研究人员从人类步态中获得灵感,将肌肉组织和人造材料结合在一起,制造了一款两腿生物混合机器人,使得机器人能够行走和旋转。相关研究1月27日发表于《物质》。“这是生物学和机械学的融合,作为以生物功能为特色的机器人技术新领域,生
学者开发可设计性构造红外光驱动功能微机器人
近日,暨南大学化学与材料学院副教授王吉壮、教授李丹团队与合作者,开发了一种通过体相异质结有机半导体太阳能电池的旋涂技术可设计性构造光驱动功能微机器人的新方法,能够在各种维度结构(0D、1D、2D、3D)上实现高效光驱动功能微机器人的设计构造。相关成果发表于《先进材料》。该研究中,研究人员将高效光电转
沈阳自动化所磁热联合驱动微型软体机器人研究取得进展
近日,中国科学院沈阳自动化研究所机器人学国家重点实验室微纳米自动化课题组在磁热联合驱动的微型软体机器人研究中取得新进展。科研人员利用4D打印技术制备的软体机器人在近红外光和磁场的联合驱动下,展示了弯曲形变、夹取及搬运功能,在微结构搬运、药物控释等方面展现出重要的应用前景。相关研究成果发表在Com
微波的微波萃取原理
利用微波能来提高萃取率的一种最新发展起来的新技术。它的原理是在微波场中,吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到介电常数较小、微波吸收能力相对差的萃取剂中;微波萃取具有设备简单、适用范围广、萃取效率高、重现性好、节省时间
微波的微波萃取原理
利用微波能来提高萃取率的一种最新发展起来的新技术。它的原理是在微波场中,吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到介电常数较小、微波吸收能力相对差的萃取剂中;微波萃取具有设备简单、适用范围广、萃取效率高、重现性好、节省时间
毫米级磁驱动软体微型机器人3D任意路径的跟随控制
近日,机器人与智能系统领域顶级学术会议——IEEE智能机器人与系统国际会议(International Conference on Intelligent Robots and Systems,IROS)在中国澳门举行。中国科学院深圳先进技术研究院集成所智能仿生中心团队发表的论文"Visual
绳驱动连续体机器人感知用类皮肤水凝胶传感器新研究
绳驱动连续体机器人(CDCR)是重要的软体机器人,具有结构轻巧、安全和自由度高等特点,能够基于其自身的柔性和可拉伸性产生大幅度弯曲、扭转变形等动作,因此它可在狭窄和复杂的环境中很好地工作。目前,CDCR系统中常用的光纤布拉格光栅传感器模量高、伸长率极低、缺乏粘附机制,限制了软体机器人的运动且易与
新仿生驱动器诞生-有望在仿生机器人、智能传感等领域应用
记者近日从中科院苏州纳米技术与纳米仿生研究所获悉,该所陈韦课题组利用制备出的新型碳氮二维纳米片电极材料,成功构筑了具有快速大应变响应的电化学驱动器,并在此基础上设计出扑翼飞行、线性运动、蛇形爬行等多种多自由度运动形式的仿生驱动器件。相关成果日前发表于《自然—通讯》杂志。 自2010年以来,该课
我国研究人员在磁驱动软体薄膜微型机器人研究中获进展
近日,机器人与智能系统领域顶级学术会议——IEEE智能机器人与系统国际会议(International Conference on Intelligent Robots and Systems,IROS)在中国澳门举行。中国科学院深圳先进技术研究院集成所智能仿生中心团队发表的论文"Visual
微波萃取的微波萃取历史
1986年,匈牙利学者Ganzler K首先提出利用微波进行萃取的方法抄。在微波萃取过程中,高频电磁波穿透萃取介质,到达被萃取物料的内部,微波能迅速转化为热能而使细胞内袭部的温度快速上升。当细胞内部的压力超过细胞的承受能力时,细胞就会破裂,有效成分即从胞内zd流出,并在较低的温度下溶解于萃取介质,再
我国研制成功液态金属驱动功能性轮式移动机器人
中国科学技术大学张世武副教授研究团队、澳大利亚伍伦贡大学李卫华教授研究团队和苏州大学李相鹏副教授研究团队组成的联合研究组,首次研制成功了镓基室温液态金属驱动的功能性轮式移动机器人。近日,该研究成果发表在国际材料学领域权威期刊《先进材料》上。 镓基室温液态金属具有独特的表面性质和理化特性,可
GPT4驱动的机器人化学家登Nature:自主设计反应,挑战复杂实验
基于 Transformer 的大语言模型(LLM)在自然语言处理、生物、化学和计算机编程等各个领域取得了重大进展。 但对于在实验室工作的研究人员或那些不熟悉计算机代码的人来说,人工智能方法并不那么容易理解。 近日,卡内基梅隆大学的研究团队找到了如何让人工智能系统自学化学的方法。提出了一种基
微流控芯片驱动磁驱动泵
采用磁激发的泵(magnetic-actuated pump) 即磁驱动泵(magnetically-driven pump ,MDP) 也是一种重要的微流体驱动控制技术—磁流控技术。磁流控技术与光驱动泵一样,一般需要在被驱动流体中添加亲磁性纳米粒子介质,实现对流体的有效控制。磁流体驱动泵的优缺点优
微波消解仪非脉冲变频微波
根据功率发射方式,把微波分为脉冲微波和非脉冲微波,传统的固定功率输出特征是开关式脉冲微波,这种控制方式不仅不易控制,还可能直接影响消化效果。 现微波发展方向为自动功率变频控制和非脉冲技术,其特征是功率自动变化,输出均为非脉冲微波,其优点是无需关闭微波发射,在连续微波发射条件下,根据温压反馈信号
微波消解仪如何防止微波泄漏?
1、主体应采用金属壁封闭的矩形工业谐振腔。 2、炉门具备三重独立连锁传感装备,在打开炉门时切断电源,炉门没有关上微波装置无法工作。
微波消解仪如何防止微波泄漏
1、主体应采用金属壁封闭的矩形工业谐振腔。 2、炉门具备三重独立连锁传感装备,在打开炉门时切断电源,炉门没有关上微波装置无法工作。
微波消解仪如何防止微波泄漏
微波消解仪如何防止微波泄漏? 1、主体应采用金属壁封闭的矩形工业谐振腔。 2、炉门具备三重独立连锁传感装备,在打开炉门时切断电源,炉门没有关上微波装置无法工作。 非脉冲变频微波控制技术的优势是什么? 根据功率发射方式,把微波分为脉冲微波和非脉冲微波,传统的固定功
微波消解仪如何防止微波泄漏?
1、主体应采用金属壁封闭的矩形工业谐振腔; 2、炉门具备三重独立连锁传感装备,在打开炉门时切断电源,炉门没有关上微波装置无法工作。
微波消解仪如何防止微波泄漏
第一:主体采用金属壁封闭的矩形工业谐振腔。 第二: 炉门具备三重独立连锁传感装备,在打开炉门时切断电源,炉门未关闭微波装置无法工作。 第三:观察窗中金属栅格或丝网的网孔足够小,可有效防止微波泄漏。