概述原核生物中的基因转换现象

在多种原核生物上, 研究表明基因转换导致了它们的多拷贝r RNA操纵子的基因致同进化现象。如:在大肠杆菌中有七个r RNA操纵子, rrn A、B、C、D、E、G和H, 每个操纵子上r RNA基因的排列顺序为16S-23S-5S, 编码r RNA的基因rrn往往是多拷贝的。Ammons等在研究敲除5S r RNA基因对细胞的影响时, 发现rrn B操纵子上敲除了其中一个5S r RNA基因后它可以通过基因转换的方式从别的操纵子上重新获得。 在副溶血弧菌的一个菌株的基因组中有11个拷贝的r RNA操纵子, 其中10个位于1号染色体上, 另一个位于2号染色体上, 其16S r RNA基因序列是完全相同的;而在另一菌株中则含有两类操纵子, 其中7个为一类型, 另外4个为另一类型, 它们的差异是在编码16S r RNA可变的主干环的25 bp中有10 bp的差异, Gonzalez-Escalona等认为这种操纵子的差异是基因转换......阅读全文

概述原核生物中的基因转换现象

  在多种原核生物上, 研究表明基因转换导致了它们的多拷贝r RNA操纵子的基因致同进化现象。如:在大肠杆菌中有七个r RNA操纵子, rrn A、B、C、D、E、G和H, 每个操纵子上r RNA基因的排列顺序为16S-23S-5S, 编码r RNA的基因rrn往往是多拷贝的。Ammons等在研究敲

原生生物中的基因转换现象

  疟原虫、利氏曼原虫等的r RNA序列的高度一致也认为是通过基因转换实现的。  Enea等在研究疟原虫的r RNA的进化时比较了恶性疟原虫和伯氏疟原虫的r RNA序列, 发现它们的r RNA基因并非由同一祖先独立进化而来的, 而是通过基因转换的方式实现物种间基因致同进化的。  贾第虫被认为是一种极

原核生物的概述

  原核生物即广义的细菌,指一大类细胞核无核膜包裹,只存在称做核区的裸露DNA的原始单细胞生物,包括真细菌和古生菌两大类群,但由于古生菌又具有许多真核生物的特征,明显区别于细菌,因此不将古生菌列入其中,而将其拿出来单独描述。具体根据外表特征等方面可以把原核生物分为狭义的细菌、蓝细菌、放线菌、支原体、

简述植物中的基因转换现象

  植物中也发现了基因转换的现象, 但不只集中在r RNA基因上, 它是反转录转座子的序列以及质体中的基因组序列保持高度一致的机制。  黄花烟草 (Nicotiana rustica) 是一种异源四倍体, 是由圆锥烟草和波叶烟草天然杂种的染色体数加倍形成的。研究发现黄花烟草中的r D N A和I G

关于动物中的基因转换现象介绍

  在蚂蝗、鲟鱼、果蝇、蜥蜴和人类等动物的核基因组中都发现有基因转换现象。以蜥蜴为例, 它是一种孤雌生殖的异源三倍体, 进行营养繁殖, 其r D N A的重复序列通过基因转换已高度纯合。这些三倍体蜥蜴有几千年历史, 只进行无性繁殖, 很少或无遗传重组, 且r D N A的基因座位没减少, 但其中一个

原核生物的基因结构介绍

原核生物的基因结构多数以操纵子形式存在,即完成同类功能的多个基因聚集在一起,处于同一个启动子的调控之下,下游同时具有一个终止子。两个基因之间存在长度不等的间隔序列,如与乳糖代谢有关酶的基因。在距转录起始点-35和-10(转录起始点上游的核苷酸序列为“-”,下游的核苷酸序列为“+”)附近的序列都有RN

真核生物与原核生物基因表达调控的差异

原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征是能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过

原核生物基因表达调控途径

真核:转录和翻译分地点进行,转录在核,翻译在基质,翻译是第一个氨基酸是甲硫氨酸,调控方式复杂,多层次,区间性原核:转录和翻译都在基质甚至没转录完就开始翻译,翻译是第一个氨基酸为甲酰甲硫氨酸,调控机制多为操纵子原核生物没有内含子,dna复制和转录相对较容易也比较简单,调控几乎完全由基因上游的rna聚合

原核生物基因组的特点

原核生物基因组的特点如下:1、基因组较小,通常只有一个环形或线形的DNA分子;2、通常只有一个DNA复制起点;3、非编码区主要是调控序列;4、存在可移动的DNA序列;5、基因密度非常高,基因组中编码区大于非编码区;6、结构基因没有内含子,多为单拷贝,结构基因无重叠现象;7、重复序列很少,重复片段为转

概述原核和真核生物mRNA有不同的特点

  ①原核生物mRNA常以多顺反子(见)的形式存在,即一条mRNA链编码几种功能相关联的蛋白质。真核生物mRNA一般以单顺反子的形式存在,即一种mRNA只编码一种蛋白质。  ②原核生物mRNA的转录与翻译一般是偶联的,即转录尚未完毕,蛋白质的转译合成就已开始。真核生物转录的mRNA前体则需经后加工,

关于基因调控的原核生物的介绍

  DNA水平上的基因调控鼠伤寒沙门氏菌(Salmoella typhimurium)有两个编码鞭毛蛋白的基因H1和H2,这两个基因并不紧密连锁。H2 的一边有一个调节基因( H1 repressor gene,rh1),它所编码的阻遏蛋白作用于 H1而使它不表达。H2基因的另一边有一段经常发生倒位

真核生物和原核生物的基因结构分别是怎样的

原核与真核生物基因结构都包括编码区和非编码区。但是原核生物的编码区是连续的,全部都可以转录出mRNA,编码出蛋白质。而真核基因的编码区是不连续的,又分为外显子和内含子,外显子能够转录出mRNA,编码出蛋白质,而内含子则不可以。因此真核基因的非编码序列包括非编码区的所有序列以及编码区里面的内含子。另外

阐述原核生物基因表达调控途径

这个题目在微生物学上是整整一章的内容,所以要想详细叙述太难了,我大概给你列出吧。转录水平调控:1.操纵子的转录调控;2.分解代谢物阻遏调控;3.细菌的应急反应;4.通过σ因子更换的调控;5.信号转导和二组分调节系统;6.噬菌体溶源化和裂解途径的转录调控。转录后调控:1.翻译起始调控;2.mRNA的稳

关于原核生物的基因表达调控介绍

  原核生物的基因表达调控虽然比真核生物简单,然而也存在着复杂的调控系统,如在转录调控中就存在着许多问题:如何在复杂的基因组内确定正确的转录起始点?如何将DNA的核苷酸按着遗传密码的程序转录到新生的RNA链中?如何保证合成一条完整的RNA链?如何确定转录的终止?  上述问题决定于DNA的结构、RNA

比较原核生物和真核生物基因组的结构特征

异:1、原核生物基因组很小,一般只有一条染色体;而真核生物基因组结构庞大。2、原核dna分子的绝大部分是用来编码蛋白质的,只有非常小的一部分不转录,这与真核dna的冗余现象不同。3、原核生物dna序列中功能相关的rna和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单位或转录单位,它们可

原核生物的特点

  ① 核质与细胞质之间无核膜因而无成形的细胞核(拟核或类核);RNA转录和翻译同时进行。  ② 遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA);  ③ 以简单二分裂方式繁殖,不存在有丝分裂或减数分裂;  

原核生物的结构

  鞭毛  鞭毛是很多单细胞生物和一些多细胞生物细胞表面像鞭子一样的细胞器,用于运动及其它一些功能。在三个域中,鞭毛的结构各不相同。细菌的鞭毛是螺旋状的纤维,像螺钉一样旋转。古生菌的鞭毛表面上和细菌的类似,但很多细节不同,和细菌的鞭毛可能也不是同源的。真核生物,比如动物、植物、原生生物细胞的鞭毛是细

蛋白质在原核生物中的表达

实验概要将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择

什么是原核生物?

  原核生物  细菌和古细菌通常具有单个环状染色体,但染色体大小存在显著变异。大多数细菌染色体的大小从13万个碱基对到1400万个碱基对不等。疏螺旋体属的螺旋体是个例外,仅含有单一线性染色体。  

原核生物mRNA的特点

  ①原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。  ②原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。  ③原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时

原核生物的呼吸方式

  原核生物细胞能进行有氧呼吸。有的原核生物,如硝化细菌、根瘤菌,虽然没有线粒体,但却含有全套的与有氧呼吸有关的酶,这些酶分布在细胞质基质和细胞膜上,因此,这些细胞是可以进行有氧呼吸的。利用细胞膜和细胞质的酶系进行有氧呼吸。第一个阶段发生的场所在细胞质内,产生的丙酮酸进入三羧酸循环,被彻底氧化生成C

原核生物基因表达调控模式及其分子机制

原核生物基因的表达调控最重要的特点是操纵子模式,从调控水平来看主要在转录水平,即对RNA合成的调控,翻译水平次之。通常有两种方式:①起始调控,即启动子调控;②终止调控,即衰减子调控。原核基因组的调控机制:通过负调控和正调控因子所进行的复合调控,阻遏蛋白与操纵基因结合,妨碍RNApol与P结合形成开放

原核生物和真核生物冈崎片段的差异

冈崎片段存在于原核生物和真核生物中。真核生物的DNA分子不同于原核生物的环状分子,因为它们更大,通常有多个复制起点。这意味着每个真核细胞的染色体都是由许多具有多个复制起点的DNA复制单元组成的。相比之下,原核DNA只有一个复制起点。原核生物和真核生物冈崎片段的长度也不同。原核生物的冈崎片段比真核生物

原核生物和真核生物冈崎片段的差异

冈崎片段存在于原核生物和真核生物中。真核生物的DNA分子不同于原核生物的环状分子,因为它们更大,通常有多个复制起点。这意味着每个真核细胞的染色体都是由许多具有多个复制起点的DNA复制单元组成的。相比之下,原核DNA只有一个复制起点。原核生物和真核生物冈崎片段的长度也不同。原核生物的冈崎片段比真核生物

原核生物和真核生物mRNA的特点对比

原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时(RNA噬菌体中的

原核生物和真核生物DNA的复制特点

起点:通常细菌等原核生物只要一个复制起点,真核生物有很多个复制起点。在不同的发育时期,真核的复制起点数目和复制子大小会改变。速率:原核生物复制速率比真核生物快。真核生物多复制子,因而整个染色体的复制速度并不比原核的慢。原核生物可以连续发动复制。

原核生物和真核生物冈崎片段的差异

  冈崎片段存在于原核生物和真核生物中。真核生物的DNA分子不同于原核生物的环状分子,因为它们更大,通常有多个复制起点。这意味着每个真核细胞的染色体都是由许多具有多个复制起点的DNA复制单元组成的。相比之下,原核DNA只有一个复制起点。  原核生物和真核生物冈崎片段的长度也不同。原核生物的冈崎片段比

水生所在原核生物的蛋白基因组分析研究中取得进展

  蛋白基因组学(Proteogenomics) 是基于高精度的串联质谱数据对基因组进行注释,不仅能在蛋白质水平上验证基因表达和模式,还能提供蛋白质组层面特有的信息,如翻译后修饰、信号肽等。目前,蛋白基因组学已成为功能基因组学研究不可或缺的重要工具。然而,对海量质谱数据实现全面和精准的解读仍是当前蛋

植物基因在大肠杆菌中的原核表达

通过大肠杆菌表达目的基因大量获得重组蛋白是一个方便快捷的方法。植物中克隆的目的基因被克隆到特异设计的质粒载体上,受噬菌体T7强启动子控制;表达由宿主细胞提供的T7 RNA聚合酶诱导。当需要表达蛋白时,在细菌培养基中加入IPTG来启动表达。不同载体在邻近克隆位点处具有编码不同的多肽“标签”的序

原核生物和真核生物mRNA有不同的特点

原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时(RNA噬菌体中的