荧光原位杂交技术原理和应用特点

荧光原位杂交(fluorescence in situ hybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子(reporter molecule)结合,杂交后再通过免疫细胞化学过程连接上荧光染料。FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA纤维切片上,再用与荧光素分子偶联的单克隆抗体与探针分子特异性结合来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析。FISH具有安全、快速、灵敏度高、探针能长期保存、能同时显示多种颜色等优点,不但能显示中期分裂相,还能显示于间期核.同时在荧光原位杂交基础上又发展了多彩色荧光原位杂交技术和染色质纤维荧光原位杂交技术.......阅读全文

荧光原位杂交技术原理和应用特点

荧光原位杂交(fluorescence in situ hybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子(reporter molecule)结

DNA纤维荧光原位杂交技术技术的特点、分类和应用

FISH的分辨率取决于载体DNA的浓缩程度,如何提高分辨率一直是一个重要课题。Wiegant等和Heng等首先利用化学方法对染色体进行线性化,再以此为载体进行FISH,使其分辨率显著提高,这就是最初的纤维-FISH。纤维-FISH应用各种不同技术,将待研究细胞的全部遗传物质即DNA在载玻片上制备出D

多彩色荧光原位杂交技术的特点、分类和应用

mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定位在一次FISH实验中完成。mFISH能同时检测多个基因,分辨复杂的染色体易位和微小缺失,区分间期细胞多倍体和超二倍体等。mFISH用激发

原位杂交技术原理和应用

  原理:  荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。

原位杂交技术的原理和特点

原位杂交(in situ hybridization)将标记的核酸探针与细胞或组织中的核酸进行杂交,称为原位杂交。使用DNA或者RNA探针来检测与其互补的另一条链在细菌或其他真核细胞中的位置。RNA原位核酸杂交又称RNA原位杂交组织化学或RNA原位杂交。该技术是指运用cRNA或寡核苷酸等探针检测细胞

荧光原位杂交技术的特点

  原位杂交的探针按标记分子类型分为放射性标记和非放射性标记。用同位素标记的放射性探针优势在于对制备样品的要求不高,可以通过延长曝光时间加强信号强度,故较灵敏。缺点是探针不稳定、自显影时间长、放射线的散射使得空间分辨率不高、及同位素操作较繁琐等。采用荧光标记系统则可克服这些不足,这就是FISH技术。

荧光原位杂交的技术特点

荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。

荧光原位杂交的技术特点

与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:①FISH不需要放射性同位素标记,更经济安全。②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。④多色FISH通过在同一个核中显

荧光原位杂交技术的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种

DNA纤维荧光原位杂交技术的原理与应用

FISH的分辨率取决于载体DNA的浓缩程度,如何提高分辨率一直是一个重要课题。Wiegant等和Heng等首先利用化学方法对染色体进行线性化,再以此为载体进行FISH,使其分辨率显著提高,这就是最初的纤维-FISH。纤维-FISH应用各种不同技术,将待研究细胞的全部遗传物质即DNA在载玻片上制备出D

多彩色荧光原位杂交技术的原理与应用

mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定位在一次FISH实验中完成。mFISH能同时检测多个基因,分辨复杂的染色体易位和微小缺失,区分间期细胞多倍体和超二倍体等。mFISH用激发

​-荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种

荧光原位杂交技术的原理

生命科学的发展,生物技术的进步使我们对疾病本质的认识不断地深入,也使我们拥有更多新的治疗方法和药物应对疾病的威胁。如何准确有效地利用这些新的治疗方法和药物治愈疾病是我们迫切需要研究的内容。如何对疾病进行正确的分型和诊断却是上述工作的基础。只有全面地把握病情,并在此基础上进行准确的判断和分析,才能为病

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重

荧光原位杂交的技术应用

(一)基因(或DNA片段)染色体定位和基因图谱绘制目前应用的基因定位的主要方法是FISH。分离到的DNA序列直接通过FISH,同时采用多种颜色荧光素的标记探针,结合中期染色体和间期细胞方面的信息,可快速确定一-系列DNA序列之间的相互次序和距离,完成基因制图。用不同颜色炎光索标记2个不同的DNA链,

荧光原位杂交的技术应用

作为一种可视化特定DNA序列的分子细胞遗传学技术,荧光原位杂交技术目前被广泛应用于染色体畸变。如非整倍体、染色体重组。其基本流程包括探针标记、探针的变性、样本变性、杂交和荧光信号采集。荧光原位杂交技术在基因定性、定量,整合、表达等方面的研究中颇具优势,目前已经被广泛应用于遗传病诊断、病毒感染分析、产

​-荧光原位杂交的技术应用

作为一种可视化特定DNA序列的分子细胞遗传学技术,荧光原位杂交技术目前被广泛应用于染色体畸变。如非整倍体、染色体重组。其基本流程包括探针标记、探针的变性、样本变性、杂交和荧光信号采集。荧光原位杂交技术在基因定性、定量,整合、表达等方面的研究中颇具优势,目前已经被广泛应用于遗传病诊断、病毒感染分析、产

荧光原位杂交技术的应用

  该技术不但可用于已知基因或序列的染色体定位,而且也可用于未克隆基因或遗传标记及染色体畸变的研究。在基因定性、定量、整合、表达等方面的研究中颇具优势。  FISH最初用于中期染色体。从正在分化的细胞核中制备的这种染色体是高度凝缩的,每条染色体都具有可识别的形态,它们染色后将显现出特征性的着丝粒位置

荧光原位杂交的技术应用

作为一种可视化特定DNA序列的分子细胞遗传学技术,荧光原位杂交技术目前被广泛应用于染色体畸变。如非整倍体、染色体重组。其基本流程包括探针标记、探针的变性、样本变性、杂交和荧光信号采集。荧光原位杂交技术在基因定性、定量,整合、表达等方面的研究中颇具优势,目前已经被广泛应用于遗传病诊断、病毒感染分析、产

简述荧光原位杂交的技术原理

  荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 [2]  荧光原位

荧光原位杂交技术的应用介绍

作为一种可视化特定DNA序列的分子细胞遗传学技术,荧光原位杂交技术目前被广泛应用于染色体畸变。如非整倍体、染色体重组。其基本流程包括探针标记、探针的变性、样本变性、杂交和荧光信号采集。荧光原位杂交技术在基因定性、定量,整合、表达等方面的研究中颇具优势,目前已经被广泛应用于遗传病诊断、病毒感染分析、产

荧光原位杂交技术的应用介绍

作为一种可视化特定DNA序列的分子细胞遗传学技术,荧光原位杂交技术目前被广泛应用于染色体畸变。如非整倍体、染色体重组。其基本流程包括探针标记、探针的变性、样本变性、杂交和荧光信号采集。荧光原位杂交技术在基因定性、定量,整合、表达等方面的研究中颇具优势,目前已经被广泛应用于遗传病诊断、病毒感染分析、产

概述荧光原位杂交的技术应用

  作为一种可视化特定DNA序列的分子细胞遗传学技术,荧光原位杂交技术目前被广泛应用于染色体畸变。如非整倍体、染色体重组。其基本流程包括探针标记、探针的变性、样本变性、杂交和荧光信号采集。  荧光原位杂交技术在基因定性、定量,整合、表达等方面的研究中颇具优势,目前已经被广泛应用于遗传病诊断、病毒感染

DNA纤维荧光原位杂交技术的技术特点

FISH的分辨率取决于载体DNA的浓缩程度,如何提高分辨率一直是一个重要课题。Wiegant等和Heng等首先利用化学方法对染色体进行线性化,再以此为载体进行FISH,使其分辨率显著提高,这就是最初的纤维-FISH。纤维-FISH应用各种不同技术,将待研究细胞的全部遗传物质即DNA在载玻片上制备出D

​-荧光原位杂交的原理和意义

荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。

荧光抗体技术的原理和技术特点

荧光抗体技术,用荧光物标记抗体来检测细胞或组织中相应抗原或抗体的技术。荧光物种类一般有异硫氰酸荧光素、罗丹明荧光素、二氯三嗪基氨基荧光素等。一般是将待测标本固定于玻片表面,滴加已知荧光抗体后再以缓冲液冲洗,干燥后于荧光显微镜下观察阳性是可见带荧光的抗原抗体复合物; 阴性无荧光(因为带荧光的抗体不能与