中子衍射方法的应用特点

中子衍射(neutron diffraction)通常指德布罗意波长为约1埃左右的中子(热中子)通过晶态物质时发生的布拉格衍射。中子衍射方法是研究物质结构的重要手段之一。衍射是波动性最突出的特征,早在1936年人们就发现中子从晶体表面散射时出现衍射现象。......阅读全文

中子衍射方法的应用特点

中子衍射(neutron diffraction)通常指德布罗意波长为约1埃左右的中子(热中子)通过晶态物质时发生的布拉格衍射。中子衍射方法是研究物质结构的重要手段之一。衍射是波动性最突出的特征,早在1936年人们就发现中子从晶体表面散射时出现衍射现象。

中子衍射方法的技术特点

对于非极化中子束,它在磁性晶体上的散射,中子衍射峰的强度是核衍射强度和磁衍射强度之和。对于极化中子束,必须考虑到核散射振幅和磁散射振幅之间的相干现象,使衍射峰强度带来加强或减弱的效果。

中子衍射的特点之二

当X射线或电子流与物质相遇产生散射时,主要是以原子中的电子作为散射中心,因而散射本领随物质的原子序数的增加而增加,并随衍射角2ι的增加而降低,而中子流不带电,与物质相遇时,主要与原子核相互作用,产生各向同性的散射,且散射本领和物质的原子序数无一定的关系。

中子衍射的特点之一

中子具有很强的穿透能力,能够测量具有较大体积固体材料的内部参与应力。

中子衍射的特点之三

中子的磁矩和原子磁矩(即电子和原子核的自旋磁矩和轨道磁矩的总和)有相互作用,其散射振幅随原子磁矩的大小和取向而变化。

中子衍射法的应用介绍

中子衍射主要应用于:1、晶体单色器从反应堆引出的热中子是连续谱。如果再引出孔道外面安置一单晶片,中子束以掠射角射向单晶片。根据布喇格条件在与入射方向成角的方向上可接受到波长为的单能中子,是反射晶面的间距。改变不同的,就可以得到不同波长的单能中子。2、极化中子中子束选取适当的铁磁晶体,通过相干衍射可以

中子衍射方法的原理

中子与其他微观粒子一样,具有波粒二象性。当中子波以掠射角射向晶面,在相邻两晶面上反射的中子波,程差为与X射线一样,当等于中子波长的整数倍时,这两支反射波相干而加强,由许多层的相干作用,出现明显的衍射峰。中子衍射的布喇格公式为式中——晶面间距;——掠射角;——散射中子波长;——衍射级次。 在反射中子束

中子衍射方法和X射线衍射方法的区别

中子衍射和X射线衍射十分相似,其不同之处在于:1、X射线是与电子相互作用,因而它在原子上的散射强度与原子序数成正比,而中子是与原子核相互作用,它在不同原子核上的散射强度不是随值单调变化的函数,这样,中子就特别适合于确定点阵中轻元素的位置(X射线灵敏度不足)和值邻近元素的位置(X 射线不易分辨);2、

中子衍射在材料研究领域的应用

中子衍射技术是一种测量材料或工程部件内部的三维应力状态的方法,在焊接、热加工与热处理过程中残余应力测量方面有着广泛的应用。

什么是中子衍射

中子衍射(neutron diffraction)通常指德布罗意波长为约1埃左右的中子(热中子)通过晶态物质时发生的布拉格衍射。它能得到其它手段不能获取的结构体应变状态信息,将工程师的梦想变成现实。这种技术的主要优势在于:1. 对于大多数工程材料而言,穿透能力在厘米的量级。2. 无损测量,并能监视现

中子衍射在材料研究领域的应用之测量残余应力

中子衍射残余应力的空间分辨可以很容易的与焊接应力场匹配,提供焊接近表面和一定深度内全部的应力信息,同时也是焊接后热处理工艺的有力诊断工具。在工程上应用,中子衍射适合大工件的测量,例如长约1m的线性管道、钢板和火车轨道等。中子衍射近表面测量方法(与表面距离大于0.1mm)可用于喷丸、表面硬化和抛光等工

中子衍射在材料研究领域的应用之测量材料微观应变

中子衍射原位拉伸实验可以得到材料在受载荷情况下的晶格应变,因此许多工作基于对材料拉伸过程中的晶格应变来研究材料的性能。通过观察和分析衍射峰的位移、宽化、不对称性,可以得到孪生层错概率、位错密度、堆垛层错能,这些信息在数量上则对应材料变形的屈服强度和加工硬化的数值等。中子衍射图谱

中子衍射在材料研究领域的应用之测量储氢能力

中子衍射区别与其他衍射的独特之处在于其可以测量材料的储氢能力。由于氢是最轻的元素,因而X射线衍射很难探测到材料中的氢元素。但同时氢有着很大的非相干散射截面,可以在含氢材料的中子射谱中产生非常高的非相干散射背景。通过用氢的同位素氘来替代氢,可以使中子捕获到化合物或者系统中氢原子,进而测量出材料的储氢性

X射线衍射技术的应用特点

X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面:物相分析物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。

选区衍射的特点

选区衍射的特点 选区电子衍射花样的优点是电子衍射能在同一试样上将形貌观察与结构分析结合起来;电子波长短,单晶的电子衍射花样就如同晶体倒易点阵的一个二维截面在底片上的放大投影,从底片上的电子衍射花样可以直观地辨认出一些晶体的结构和对称性等特点,使晶体结构的研究比通过X射线的研究简单;物质对电子的散射能

X射线衍射的特点

波长短,穿透力强,可进行无损探伤检测、透视、晶体结构表征、微观应力测试等应用!

X射线衍射的特点

波长短,穿透力强,可进行无损探伤检测、透视、晶体结构表征、微观应力测试等应用!

X射线衍射的特点

波长短,穿透力强,可进行无损探伤检测、透视、晶体结构表征、微观应力测试等应用!

衍射光栅的功能特点

衍射光栅是光栅的一种。它通过有规律的结构,使入射光的振幅或相位(或两者同时)受到周期性空间调制。衍射光栅在光学上的最重要应用是作为分光器件,常被用于单色仪和光谱仪上。

中国先进研究堆中子科学谱仪首获衍射图像

  8月21日,中国原子能科学研究院中国先进研究堆中子科学谱仪首次获得衍射图像,业内人士表示,这表明谱仪安装的位置基本正确,已具备开展科学实验研究工作的条件。   当天下午13时左右,中国先进研究堆启动,功率逐渐提升、中子束流出现,10多分钟后,该院核物理所中子散射实验室李峻宏博士高呼:“应力谱仪

中子活化分析的特点

  NAA法特别适合考古学中的元素分析。它与其他元素分析法相比较,有许多优点:  其一,灵敏度高,准确度、精确度高。NAA法对周期表中80%以上的元素的灵敏度都很高,一般可达10-6-10-12g,其精度一般在±5%。  其二,多元素分析,它可对一个样品同时给出几十种元素的含量,尤其是微量元素和痕量

X射线衍射的应用

  X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面:  物相分析  物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中

衍射光栅的应用原理

通常所讲的衍射光栅是基于夫琅禾费多缝衍射效应工作的。描述光栅结构与光的入射角和衍射角之间关系的公式叫“光栅方程”。波在传播时,波阵面上的每个点都可以被认为是一个单独的次波源;这些次波源再发出球面次波,则以后某一时刻的波阵面,就是该时刻这些球面次波的包络面(惠更斯原理)。一个理想的衍射光栅可以认为由一

衍射光栅的应用原理

通常所讲的衍射光栅是基于夫琅禾费多缝衍射效应工作的。描述光栅结构与光的入射角和衍射角之间关系的公式叫“光栅方程”。波在传播时,波阵面上的每个点都可以被认为是一个单独的次波源;这些次波源再发出球面次波,则以后某一时刻的波阵面,就是该时刻这些球面次波的包络面(惠更斯原理)。一个理想的衍射光栅可以认为由一

电子衍射的应用

电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。会聚束电子衍射的特点是可以用来测定晶

中子活化分析的应用

   中子活化分析  中子活化分析在考古学中主要用来测量陶瓷器、玻璃、银币、铜镜、燧石、骨头化石等样品中的微量元素和痕量元素,进行统计分析,寻找共同性和差异性,从而确定元素成分的演变、产地及矿源等。不同地区的陶瓷土的元素组成差异,特别是微量、痕量元素组成差异大于它们在同一陶土源不同部位的涨落。以我国

国内首台中子工程材料衍射谱仪系统通过验收

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517136.shtm近日,东莞市科学技术博物馆在散裂中子源科学中心组织召开了中子工程材料衍射谱仪系统验收会。验收组专家一致认为,散裂中子源科学中心圆满完成了中子工程材料衍射谱仪系统的建设任务。  

国内首台中子工程材料衍射谱仪系统通过验收

  近日,东莞市科学技术博物馆在散裂中子源科学中心组织召开了中子工程材料衍射谱仪系统验收会。验收组专家一致认为,散裂中子源科学中心圆满完成了中子工程材料衍射谱仪系统的建设任务。  来自中山大学、南方科技大学、北京科技大学、东莞理工学院、东莞材料基因高等理工研究院等单位组成的验收专家组认真听取了验收报

X射线衍射残余应力测试方法及应用

介绍了X射线衍射仪测定材料残余应力的原理、测定参数的选择依据,并以7055铝合金为试验对象,进行了不同热处理机制的材料残余应力的测定。试验结果表明:X射线衍射仪测定7055铝合金的参数为管电压28.5 kV、管电流9 mA、扫描步距0.05。、计数时间20 s、4ψ角、铬靶(311)晶面、准直管

中子输运加速计算方法与应用研究获进展

  近日,中国科学院合肥研究院等离子体物理研究所聚变堆材料及部件研究室博士后郑俞在蒙特卡罗大规模加速模拟研究方面取得新进展。相关成果发表在Nuclear Fusion上。  核能领域中蒙特卡罗模拟是最精确的求解方法之一,而聚变反应堆几何复杂、尺寸大、屏蔽厚,蒙特卡罗大规模计算存在深穿透屏蔽问题,导致