核磁共振术语饱和与驰豫

1H的自旋量子数是I=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。1H的两种取向代表了两种不同的能级,在磁场中,m=1/2时,E=-μB0,能量较低,m=-1/2时,E=μB0,能量较高,两者的能量差为ΔE=2μB0。式①,式②说明:处于低能级的1H核吸收E射的能量时就能跃迁到高能级。也即只有当电磁波的辐射能等于lH的能级差时,才能发生1H的核磁共振。E射=hν射=ΔE=hν0 ②因此1H发生核磁共振的条件是必须使电磁波的辐射频率等于1H的进动频率,既符合下式。ν射=ν0=γB0/2π ③由式③可知:要使ν射=ν0,可以采用两种方法。一种是固定磁感应强度,逐渐改变电磁波的辐射频率ν射,进行扫描,当ν射与B0匹配时,发生核磁共振。另一种方法是固定辐射波的辐射频率,然后从低场到高场,逐渐改变B0,当 B0与ν射匹配时,也会发生核磁共振。这种方法称为扫场。—般仪器都采用扫场的方法。在外磁场的作用下,有较多1......阅读全文

核磁共振波谱仪的主要用途

核磁共振波谱仪是对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成份分析,可应用于生物化学、生物医学、环主要用途: 1.可进行1H、13C等常规测量,并可检测31P,15N,29Sz等多换谱 2.可进行各类如DEPT、HSQC、驰豫测量 3.可进行活性肽,多肽类蛋白的溶液结构研究 4.可进行

合肥工业大学等研制出我国首台“-氦三极化靶”

  12月23日,由合肥工业大学研发的我国首台“氦三极化靶”通过科技部专家组验收。  氦三(3He)是稳定氦(2He)的同位素。由于自然界中中子的寿命很短,人们难以找到稳定的中子靶。而氦三极化靶作为理想的中子靶,在核子结构及生命科学研究中有着非常重要的应用。目前世界上仅有极少数发达国家掌握该技术。 

葵花籽油热氧化过程的低场核磁共振弛豫特性研究

葵花籽油热氧化过程的低场核磁共振 弛豫特性研究背景简介食用油在加工和贮藏过程中会发生一系列的化学反应,其中,油脂的热氧化反应对油脂及含油食品的 稳定性影响最大,产生的氧化产物,破坏油脂营养风味、影响人体健康。因此,油脂热氧化反应机理及相关检测方法一直是油脂研究领域的热点之一。低场核磁共振是一种非常有

核磁共振应用于岩土孔隙结构分析和孔隙度测量

核磁共振应用岩土孔隙结构分析和孔隙度测量应用背景一般认为土壤由固相(土壤颗粒)、液相(土壤水)和气相(土壤所含气体)三相构成,在土壤颗粒空隙完全由液相填充,即水占土壤空隙的比例为百分之百时该土壤称之为饱和土。反之,土壤孔隙由水和空气填充,即饱和度小于100时但大于0时,该土壤为非饱和土。 土体孔

根据碳氢链饱和与不饱和对脂肪酸进行分类

脂肪酸根据碳氢链饱和与不饱和的不同可分为3类 ,即:饱和脂肪酸(Saturated fatty acids,SFA),碳氢上没有不饱和键;单不饱和脂肪酸(Monounsaturated fatty acids,MUFA),其碳氢链有一个不饱和键; 多不饱和脂肪酸(Polyunsaturated fa

核磁共振的原理

核磁共振用NMR(Nuclear Magnetic Resonance)为代号。1.原子核的自旋核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。I为零的原子

核磁共振是做什么检查的

核磁共振用NMR(Nuclear Magnetic Resonance)为代号。1.原子核的自旋核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。I为零的原子

核磁共振谱怎么分析

核磁共振用NMR(Nuclear Magnetic Resonance)为代号。1.原子核的自旋核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。I为零的原子

武汉物数所在核磁共振用于重大疾病诊断方面取得重要进展

  大鼠肝脏组织的二维1H-14N HSQC谱图  以核磁共振为手段的多项研究表明,胆碱(Choline)及其衍生物可以作为癌症诊断的生物标记物,并且已经在乳腺癌及前列腺癌的研究中取得了重要进展。然而在临床诊断中,胆碱及其衍生物含量的测定却非常困难,其原因是在核磁共振1H谱中,这些物

核磁共振应用岩土孔隙结构分析和孔隙度测量

应用背景一般认为土壤由固相(土壤颗粒)、液相(土壤水)和气相(土壤所含气体)三相构成,在土壤颗粒空隙完全由液相填充,即水占土壤空隙的比例为百分之百时该土壤称之为饱和土。反之,土壤孔隙由水和空气填充,即饱和度小于100时但大于0时,该土壤为非饱和土。 土体孔隙中的水,按其存在的状态、性质和流动方式,可

核磁共振波谱仪测量二维谱

维谱技术是七十年代后期发展起来的,它能给出物质结构的丰富信息,在解析复杂图谱和研究高阶耦合效应方面显示了很大的优越性,在过去几十年中核磁共振的发展是非常快的。(核磁共振波谱仪)已经很少有几个化学的领域与核磁波谱学的结果无紧密联系,而且它的重要性目前已深入到自然科学的所有领域,从固态物理到分子生物学,

核磁共振原理

1.原子核的自旋 图 核磁共振原理图核磁共振主要是由原子核的自旋运动引起的。不同的原子 核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况:I为零的原子核 可以看作是一种非自旋的球体;I为1/2的原子核可以看作是一种电荷分

核磁共振仪的高场和低场核磁比较

  高场核磁主要用于测试分子化学结构,通过化学位移得到分子内部结构信息,研究领域属微观领域(分子内部),可进行1H、13C常规测量,31P,15N,29Sz等多核谱,DEPT、HSQC、驰豫测量,活性肽,多肽类蛋白的溶液结构研究,化合物的结构、组分的鉴定,多维梯度实验,现在主要是各大高校科研院所实验

核磁共振波谱仪——高场和低场核磁比较

高场核磁主要用于测试分子化学结构,通过化学位移得到分子内部结构信息,研究领域属微观领域(分子内部),可进行1H、13C常规测量,31P,15N,29Sz等多核谱,DEPT、HSQC、驰豫测量,活性肽,多肽类蛋白的溶液结构研究,化合物的结构、组分的鉴定,多维梯度实验,现在主要是各大高校科研院所实验室使

影响化学位移的因素有哪些

化学位移是核磁共振中的一种术语,是化学环境所引起的核磁共振信号位置的变化,具体是用数字来进行表达(相对的,通常使用四甲基硅烷作为基准)。如果你是大学生,有空去帮师兄师姐做做实验你就会很了解,核磁共振是化合物结构解析的常用手段。影响因素可以表示为内因:有吸电子基团的向低场移动(因为屏蔽作用减少,弛豫所

影响化学位移的因素有哪些

化学位移是核磁共振中的一种术语,是化学环境所引起的核磁共振信号位置的变化,具体是用数字来进行表达(相对的,通常使用四甲基硅烷作为基准)。如果你是大学生,有空去帮师兄师姐做做实验你就会很了解,核磁共振是化合物结构解析的常用手段。影响因素可以表示为内因:有吸电子基团的向低场移动(因为屏蔽作用减少,弛豫所

影响化学位移的因素

化学位移是核磁共振中的一种术语,是化学环境所引起的核磁共振信号位置的变化,具体是用数字来进行表达(相对的,通常使用四甲基硅烷作为基准)。如果你是大学生,有空去帮师兄师姐做做实验你就会很了解,核磁共振是化合物结构解析的常用手段。影响因素可以表示为内因:有吸电子基团的向低场移动(因为屏蔽作用减少,弛豫所

影响化学位移的因素有哪些

化学位移是核磁共振中的一种术语,是化学环境所引起的核磁共振信号位置的变化,具体是用数字来进行表达(相对的,通常使用四甲基硅烷作为基准)。如果你是大学生,有空去帮师兄师姐做做实验你就会很了解,核磁共振是化合物结构解析的常用手段。影响因素可以表示为内因:有吸电子基团的向低场移动(因为屏蔽作用减少,弛豫所

影响化学位移的因素有哪些

化学位移是核磁共振中的一种术语,是化学环境所引起的核磁共振信号位置的变化,具体是用数字来进行表达(相对的,通常使用四甲基硅烷作为基准)。如果你是大学生,有空去帮师兄师姐做做实验你就会很了解,核磁共振是化合物结构解析的常用手段。影响因素可以表示为内因:有吸电子基团的向低场移动(因为屏蔽作用减少,弛豫所

影响化学位移的因素有哪些

化学位移是核磁共振中的一种术语,是化学环境所引起的核磁共振信号位置的变化,具体是用数字来进行表达(相对的,通常使用四甲基硅烷作为基准)。如果你是大学生,有空去帮师兄师姐做做实验你就会很了解,核磁共振是化合物结构解析的常用手段。影响因素可以表示为内因:有吸电子基团的向低场移动(因为屏蔽作用减少,弛豫所

低场核磁共振弛豫法研究酶对肌原纤维蛋白凝胶的影响

低场核磁共振弛豫法研究酶对肌原纤维蛋白凝胶的影响肌原纤维蛋白在肉类加工过程中起着重要的作用,在肉制品在加热过程中肌原纤维蛋白热变形聚合,形成重要的结构,对肉的品质起到重要的作用,直接影响蛋白的感官性质(肉制品的弹性、多汁性、口感等)。热凝胶化有助于形成精细的纹理,产品成型,并在产品中保持水分。肌原纤

核磁共振波谱法基本原理(二)

(三)核磁共振条件由于在磁场中具有核磁矩的1H裂分为两个不同能级,如果在B0的垂直方向用电磁波照射,提供一定的能量,当电磁波的能量(hv)等于两个能级的能级差△E,则处于低能级的核可以吸收频率为v的射频波跃迁到高能级,从而产生核磁共振吸收信号。相邻核磁能级的能级差为:电磁波的能量:△E'=h

大连化物所观测到掺杂量子点中的“声子瓶颈”动力学现象

  近日,中国科学院大连化学物理研究所光电材料动力学特区研究组研究员吴凯丰团队在半导体量子点热电子驰豫动力学研究方面取得新进展,首次观测到了铜掺杂量子点中热电子驰豫的“声子瓶颈”效应。  在大多数无机半导体材料中,具有高于半导体带隙能量的热载流子会与晶格(声子)碰撞,快速(亚皮秒级别)弛豫至带边,导

大连化物所观测到掺杂量子点中的“声子瓶颈”动力学现象

  近日,中国科学院大连化学物理研究所光电材料动力学特区研究组研究员吴凯丰团队在半导体量子点热电子驰豫动力学研究方面取得新进展,首次观测到了铜掺杂量子点中热电子驰豫的“声子瓶颈”效应。  在大多数无机半导体材料中,具有高于半导体带隙能量的热载流子会与晶格(声子)碰撞,快速(亚皮秒级别)弛豫至带边,导

核磁共振数据分析混凝土孔隙率与抗盐冻关系

核磁共振数据分析混凝土孔隙率与抗盐冻关系在北方地区路用混凝土结构物不仅承受着严重的汽车超载问题,还经受着此地区春冬季冻融以及 昼夜温差大、冬季撒盐化雪造成盐冻的问题。因此这一区域水泥混凝土路面及其他混凝土结构物均破坏严重。但目前北方很多地区公路建设对高性能混 凝土的研究尚不多见根据前人研究,影响混凝

mr波谱分析的基本原理

波谱分析主要是以光学理论为基础,以物质与光相互作用为条件,建立物质分子结构与电磁辐射之间的相互关系,从而进行物质分子几何异构、立体异构、构象异构和分子结构分析和鉴定的方法。该法主要包括紫外光谱法、红外光谱法、核磁共振光谱法和质谱分析法。MR波谱(MR spectroscopy,MRS)是目前能够进行

核磁共振波谱仪的低场和高场核磁有哪些区别?

低场核磁共振波谱仪可测试分子与分子之间的动力学信息,过弛豫时间得到分子运动信息,分子与分子之间的作用信息。设备体积小,检测样品快速、无损、实时、无需任何化学试剂,仪器费用低廉,不需要特别维护。是科学研究,食品安全,制药,环境保护,化学教学等实验室的必备之选,在有机合成反应监控,食用油掺假,质量控制,

金属所发现纳米金属机械稳定性的反常晶粒尺寸效应

  纳米金属的晶界在机械变形作用下容易发生晶界迁移并伴随晶粒长大,使得纳米材料发生软化,这种现象在拉伸、压缩、压痕等变形条件下均有大量实验和相关计算模拟结果的报道。机械驱动晶界迁移不仅破坏材料的性能,也给利用塑性变形法制备纳米晶带来巨大困难。尽管目前对于机械驱动晶界迁移的根本机制还存在争议,但相关模

低场核磁共振技术在常规岩心分析中的应用案例分析

低场核磁共振技术在常规岩心分析中的应用案例分析岩心分析是认识油气层地质特征的必要手段,岩石作为一种多孔介质材料,其内部的孔隙结构、孔内分子的运动状态、反应过程等现象以及现象之间的相互关系是岩心分析研究的重要课题。近年来,低场核磁共振岩心分析技术已经成为快速测量岩石物性参数的重要手段,其适合于实验室研

德国耐驰:领先的热分析与热物性仪器

  德国耐驰仪器制造有限公司是欧洲最早设计、制造热分析仪器的厂商,也是世界最顶尖的热分析仪器专业生产厂商之一。2009年11月25日——28日,在北京展览馆2号展厅2131~2134展位上,德国耐驰带着多款新型仪器参加了BCEIA展会,吸引了众多与会人员的目光。分析测试百科网(www.antpedi