羟基磷灰石的结构和功能特点

羟基磷灰石(HAP),又称羟磷灰石,碱式磷酸钙,是钙磷灰石(Ca5(PO4)3(OH))的自然矿物化,但是经常被写成(Ca10(PO4)6(OH)2)的形式以突出它是由两部分组成的:羟基与磷灰石。OH-能被氟化物、氯化物和碳酸根离子代替,生成氟基磷灰石或氯基磷灰石,其中的钙离子可以被多种金属离子通过发生离子交换反应代替,形成对应金属离子的M磷灰石(M代表取代钙离子的金属离子)。......阅读全文

羟基磷灰石的结构和功能特点

羟基磷灰石(HAP),又称羟磷灰石,碱式磷酸钙,是钙磷灰石(Ca5(PO4)3(OH))的自然矿物化,但是经常被写成(Ca10(PO4)6(OH)2)的形式以突出它是由两部分组成的:羟基与磷灰石。OH-能被氟化物、氯化物和碳酸根离子代替,生成氟基磷灰石或氯基磷灰石,其中的钙离子可以被多种金属离子通过

羟基磷灰石的理化性质

密度:3.076g/cm3熔点:1100℃外观:灰白色粉末水溶性:不溶于水

羟基磷灰石的应用领域

骨替代材料、整形和整容外科、齿科、层析纯化、补钙剂,广泛应用于制造认同牙齿或骨骼成份的尖端新素材。另外,由于羟基磷灰石具有骨诱导性,常常应用于骨组织再生工程。

羟基磷灰石的基本信息

中文名: 羟基磷灰石英文名:Hydroxyapatite化学式:Ca10(PO4)6(OH)2分子量:1004.62CAS号:1306-06-5EINECS号:215-145-7

羟基磷灰石的生态学数据

对水稍微有危害的不要让未稀释或大量的产品接触地下水、水道或者污水系统,若无政府许可,勿将材料排入周围环境。

羟基磷灰石的毒理学数据

急性毒性:大鼠口经LD50:>25350mg/kg;大鼠植入皮下LD50:>19850mg/kg;小鼠口经LC50:>99500mg/kg;小鼠植入皮下LC50:>25500mg/kg。

新型羟基磷灰石柔性生物纸问世

    本报讯 近日,中科院上海硅酸盐研究所研究员朱英杰带领的科研团队研制出具有良好柔韧性和优异力学性能的新型羟基磷灰石超长纳米线基生物纸。相关研究结果受到高度评价,作为外封面论文发表在《欧洲化学》,另一篇论文发表在《亚洲化学》并入选封面论文。  羟基磷灰石是脊椎动物骨骼和牙齿的主要无机成分,具有优

羟基磷灰石的性质与稳定性

如果遵照规格使用和储存则不会分解,未有已知危险反应,避免氧化物。

羟基磷灰石的来源分布及制备方法

制备:可由Ca3(PO4)2和CaCO3按拟定比例在高温下反应同时注入高压水蒸气,粉末经NH4Cl水溶液洗涤后干燥而成,分多孔型和致密型两种,前者是粉料发泡后于1250℃烧结制备,后者成型后于1250℃烧结而成。分布:广泛存在于人体和牛乳中,人体内主要分布于骨骼和牙齿中,牛乳内主要分布于酪蛋白胶粒和

氢键的结构和功能特点

氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(O F N等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用,称为氢键。[X与Y可以是同一种类分子,如水分子之间的氢键;也可以是不同种类分子,如一水合氨分子(NH3·H2O)之间的氢键]。

乙烯的结构和功能特点

乙烯(Ethylene),化学式为C2H4,分子量为28.054,是由两个碳原子和四个氢原子组成的有机化合物。两个碳原子之间以碳碳双键连接。乙烯存在于植物的某些组织、器官中,是由蛋氨酸在供氧充足的条件下转化而成的。

叶酸的结构和功能特点

叶酸是一种水溶性维生素,分子式是C19H19N7O6。因绿叶中含量十分丰富而得名,又名蝶酰谷氨酸。在自然界中有几种存在形式,其母体化合物是由蝶啶、对氨基苯甲酸和谷氨酸3种成分结合而成。

腺苷的结构和功能特点

腺苷,是指由腺嘌呤的N-9与D-核糖的C-1通过β糖苷键连接而成的化合物,化学式为C10H13N5O4,其磷酸酯为腺苷酸。腺苷是一种遍布人体细胞的内源性核苷,可直接进入心肌经磷酸化生成腺苷酸,参与心肌能量代谢,同时还参与扩张冠脉血管,增加血流量。

溶酶体的结构和功能特点

溶酶体是分解蛋白质、核酸、多糖等生物大分子的细胞器。溶酶体具单层膜,形状多种多样,是0.025~0.8微米的泡状结构,内含许多水解酶,溶酶体在细胞中的功能,是分解从外界进入到细胞内的物质,也可消化细胞自身的局部细胞质或细胞器,当细胞衰老时,其溶酶体破裂,释放出水解酶,消化整个细胞而使其死亡。溶酶体(

泛酸的结构和功能特点

维生素B5又叫泛酸,是一种水溶性维生素,化学式为C9H17NO5,因广泛存在于动植物中而得“泛酸”之名。由于所有的食物都含有维生素B5,所以几乎不存在缺乏问题。

亚基的结构特点和功能

亚基(subunit)是生物学术语,指有些蛋白质分子含有两条或多条多肽链,每一条多肽链都有完整的三级结构。亚基与亚基之间呈特定的三维空间排布,并以非共价键连接,它是具有四级结构的蛋白质中最小的共价单位。亚基之间的结合力主要是疏水作用,其次是离子键、氢键和范德华力。

cccDNA的功能和结构特点

在乙肝病毒的复制过程中,病毒DNA进入宿主细胞核,在DNA聚合酶的作用下,两条链的缺口均被补齐,形成超螺旋的共价、闭合、环状DNA分子(covalently closed circularDNA,cccDNA)。细胞外乙型肝炎病毒DNA是一种松弛环状的双链DNA(relaxed circularDN

羟基磷灰石柱用于蛋白质层析实验

羟基磷灰石 (hydroxyapatite,HA) 是一种以磷酸钙为原料的羟基化物, 其大量地用于蛋白质的层析分离主要是在 1991?2009 年,并且最初只是用于重组蛋白的纯化。HA 的使用方法参照 Tiselius 等(1956) 的论述和 Gorbunoff(1985) 的综述。实验步骤一、机

羟基磷灰石柱用于蛋白质层析实验

实验步骤 一、机制 从 1971 年(Bernardi,1971;Gorbunoff,1990) 就已经幵始定期发表关于 HA 对蛋白质吸附与解吸附的综述。最近的一篇文献 (Kandorietal.,2004) 引用了较早阐述的

羟基神经酸的定义和结构

中文名称羟基神经酸英文名称hydroxynervonic acid定  义学名:2-羟基-顺-15-二十四碳单烯酸。某些脑苷脂的重要成分。应用学科生物化学与分子生物学(一级学科),脂质(二级学科)

胚斑的功能和结构特点

在动物卵母细胞核中所认定的一种核仁(R.Wagner,1836)。这种核仁的形态、数目、位置,都可由于卵的发生时期和动物种类的不同而有很大的差异。在海胆和哺乳类等卵黄少的情况下,核仁的形体较大,数目为1(海胆)-2个;而在鱼类、两栖类、爬行类、鸟类和某种昆虫等一些卵黄多、胞核大的卵,其核仁的数目则很

转分化的结构和功能特点

转分化是指一种类型的分化细胞通过基因选择性表达(或基因的重编程)使其在结构和功能上转变成另一种分化细胞的过程称为细胞的转分化(cell transdifferentiation)

分化因子的结构和功能特点

中文名称分化因子英文名称differentiation factor定  义在生物体发育中使细胞和组织结构独特化和专一化的过程中,涉及细胞内分化和细胞间分化两个层次的一大类调控因子。如血管内皮生长因子、粒细胞集落刺激因子、粒细胞-巨噬细胞集落刺激因子、生长分化因子-9、胰岛素样生长因子等。应用学科生

间隔DNA的结构和功能特点

DNA加合物是化学毒物经生物系统代谢并活化后的亲电活性产物与DNA分子特异位点结合形成的共价结合物。当一种化学物质与DNA结合时,DNA就会受损,DNA复制和细胞复制等生物过程将无法正常进行。这种结合激活了DNA的修复过程。如果受损的DNA没有受到有效的修复,就可能导致癌症的发生。

信号素的结构和功能特点

中文名称信号素英文名称alarmone定  义细菌中的一种信号分子,类似于多细胞生物的激素,对各种环境应激的一种反应。有诱导终止蛋白质合成和核糖体核糖核酸基因转录的功能,通过控制许多生化反应以调节代谢。应用学科生物化学与分子生物学(一级学科),激素与维生素(二级学科)

玉米素的结构和功能特点

玉米素(Zeatin)是一种有机化合物,分子式为C10H13N5O。外观为白色结晶或粉末,难溶于水,溶于醇和DMF。无毒,小鼠急性口服LD50>1000毫克/千克。是植物体内天然存在的一种天然细胞分裂素。它是从甜玉米灌浆期的籽粒中提取并结晶出的第1个天然细胞分裂素。已能人工合成。生产中使用的外源玉米

互利素的结构和功能特点

中文名称互利素英文名称synomone定  义一个机体产生的能影响另一种生物个体行为,并对生产者和接受者都有益的化合物。应用学科生物化学与分子生物学(一级学科),激素与维生素(二级学科)

动物极的结构和功能特点

动物卵细胞富含原生质的一端称为动物极。由于卵内所含细胞质、细胞器、核糖体、卵黄、色素粒及糖原颗粒等物质的不均匀分布而表现出极性,分为动物极和植物极;营养物质(卵黄)较少、卵裂速度较快的一极称为动物极;细胞核偏位于动物极。与动物极相对的一端含较多的卵黄颗粒或卵黄小板、卵裂速度较慢的一极称植物极。由于卵

鸟苷的结构和功能特点

中文别名:鸟嘌呤核苷;9-(β-D-呋喃核糖基)鸟嘌呤;鸟嘌呤-9-β-D-呋喃核糖苷。难溶于冷水,易溶于温水,18℃下1320 mL水中溶解1 g,沸水浴中,33 mL水中溶解1 g。可溶于酸碱,如稀矿酸、热乙酸。不溶于有机溶剂。如醇、醚、氯仿和苯。

甲硫氨酸的结构和功能特点

甲硫氨酸是一种化学物质,是构成人体的必需氨基酸之一,分子式是C5H11O2NS,参与蛋白质合成。因其不能在体内自身生成,所以必须由外部获得。如果甲硫氨酸缺乏就会导致体内蛋白质合成受阻,造成机体损害。体内氧自由基造成的膜脂质过度氧化是导致机体多种损害的原因。脂质过氧化物会损害初级和次级溶酶体膜,使溶酶