原位合成芯片的概念
原位合成芯片是指将多个寡核苷酸片段用单核苷酸底物直接合成到载体的特定位置上制备的芯片。......阅读全文
原位合成芯片的概念
原位合成芯片是指将多个寡核苷酸片段用单核苷酸底物直接合成到载体的特定位置上制备的芯片。
生物芯片技术的原位合成
光引导原位合成 原位合成适于制造寡核苷酸和寡肽微点阵芯片,具有合成速度快、相对成本低、便于规模化生产等优点。照相平板印刷技术是平板印刷技术与DNA和多肽固相化学合成技术相结合的产物,可以在预设位点按照预定的序列方便快捷地合成大量寡核苷酸或多肽分子。在生物芯片研制方面享有盛誉的美国Affymet
原位合成芯片的制备方法介绍
方法一Affymetrix公司将光平版印刷技术(photolithographicapproach)运用到DNA合成化学中,利用固相化学、光敏保护基及光刻技术得到位置确定、高度多样性的化合物集合。该法利用光敏保护基来保护碱基单位的5’羟基。第一步利用光照射使固体表面上的羟基脱保护,然后固体表面与光敏
原位合成的概念和应用介绍
原位合成是一种制作基因芯片的方法,是原来用于电子芯片制作的光刻法转为核酸序列的合成技术。利用光罩控制反应位置,将核苷酸分子依序列一个一个接上去;可大量生产超高密度的芯片。由于制程与光罩成本等因素,这种方法做出的探针长度约在25-mer以下;因此同一个基因需要多个探针对应,以避免误判。
原位合成的基因芯片制备技术
生物芯片制备中材料的固定方式主要包括原位合成法和点样法两种,点样法又分为接触式点样法和非接触式点样法。原位合成法主要用于基因芯片的制备,点样法可用于基因芯片和蛋白质芯片的制备。细胞芯片主要是通过细胞本身的贴壁生长来完成固定。组织芯片通过一些黏性溶剂(如石蜡)使组织切片固定在载体上。某些微流体芯片不需
原位合成应用于生物芯片制备
在生物基因工程领域,生物芯片制备中材料的固定方式主要包括原位合成法和点样法两种,点样法又分为接触式点样法和非接触式点样法。原位合成法主要用于基因芯片的制备,点样法可用于基因芯片和蛋白质芯片的制备。细胞芯片主要是通过细胞本身的贴壁生长来完成固定。组织芯片通过一些黏性溶剂(如石蜡)使组织切片固定在载体上
原位芯片的应用
原位芯片作为基础材料,它就像一个支点,可撬动多领域的应用,且与我们生活息息相关。比如,在原位芯片的“助攻”下,电子显微镜观测能力将大幅度提高,能全程高清拍摄每个原子的变化和运动轨迹,借由这项技术,可以研究汽车尾气、废水等。由于原位芯片高通量、少样本量的特性,可满足超快速体外诊断(如用尿液检测
原位PCR的概念
原位PCR就是在组织细胞里进行PCR反应,它结合了具有细胞定位能力的原位杂交和 高度特异敏感的PCR技术的优点,是细胞学科研与临床诊断领域里的一项有较大潜力的新技术。原位PCR是Hasse等于1990年建立的,实验用的标本是新鲜组织、石蜡包埋组织、脱落 细胞、血细胞等.
原位合成的应用范围
复合材料制备传统复合材料制备方法有粉末冶金法、喷射成型法和各种铸造技术即模压铸造、流变铸造和混砂铸造等。所有这些方法是将事先制备好的增强相加入处于熔融状态或粉末状态的基体材料中,于是传统的增强相被称为外加的。外加法制备的复合材料存在增强体颗粒尺寸粗大、热力学不稳定、界面结合强度低等缺点。为了克服这些
DNA芯片的概念
DNA芯片又叫做基因芯片(gene chip)或基因微阵列(microarray),寡核酸芯片,或DNA微阵列,它是通过微阵列技术将高密度DNA片段阵列以一定的排列方式使其附着在玻璃、尼龙等材料上面。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。
荧光原位杂交的概念
荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。
生物芯片的概念
基因芯片(又称 DNA 芯片、 生物芯片)技术就是顺应这一科学发展要求的产物,它的出现为解决此类问题提供了光辉的前景。该技术系指将大量(通常每平方厘米 点阵密度高于 400 )探针分子固定于支持物上后与标记的 样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。
DNA合成的概念
中文名称DNA合成英文名称DNA synthesis定 义按照预定核苷酸的顺序,将脱氧核苷酸逐个进行人工连接合成DNA链的方法。目前多是采用固相合成法,即是在多聚体支持物上从3′端延伸核苷酸,可自动化操作。应用学科生物化学与分子生物学(一级学科),方法与技术(二级学科)
关于原位芯片你需要知道的
原位芯片也叫原位合成芯片,原位芯片的主要材质是硅,表层覆盖纳米级氮化硅薄膜。电子级的氮化硅薄膜实际上是一种硅氮化合物,常用作微电子技术电绝缘层,通过化学气相沉积或者等离子体增强化学气相沉积技术制造的。而选择氮化硅薄膜的理由是因为它作为集成电路芯片最外层钝化膜和保护膜有优势。氮化硅硬度大,耐磨耐划,致
基因芯片概念
基因芯片(又称 DNA 芯片、生物芯片)技术就是顺应这一科学发展要求的产物,它的出现为解决此类问题提供了光辉的前景。该技术系指将大量(通常每平方厘米点阵密度高于 400 )探针分子固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。通俗地说,
3分钟了解原位芯片
原位芯片也叫原位合成芯片,原位芯片的主要材质是硅,表层覆盖纳米级氮化硅薄膜。电子级的氮化硅薄膜实际上是一种硅氮化合物,常用作微电子技术电绝缘层,通过化学气相沉积或者等离子体增强化学气相沉积技术制造的。而选择氮化硅薄膜的理由是因为它作为集成电路芯片外层钝化膜和保护膜有优势。氮化硅硬度大,耐磨耐划
组织芯片的概念和应用
组织芯片(tissue chip),也称组织微阵列(tissue microarrays),是生物芯片技术的一个重要分支,是将许多不同个体组织标本以规则阵列方式排布于同一载体(使用载玻片最多)上,进行同一指标的原位组织学研究。该技术自1998年问世以来,以其大规模、高通量、标准化等优点得到大范围的推
DNA芯片的基本概念
DNA芯片又叫做基因芯片(gene chip)或基因微阵列(microarray),寡核酸芯片,或DNA微阵列,它是通过微阵列技术将高密度DNA片段阵列以一定的排列方式使其附着在玻璃、尼龙等材料上面。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。
合成肽疫苗的概念
合成肽疫苗是一种仅含免疫决定簇组分的小肽, 即用人工方法按天然蛋白质的氨基酸顺序合成保护性短肽, 与载体连接后加佐剂所制成的疫苗,是最为理想的安全新型疫苗,也是研制预防和控制感染性疾病和恶性肿瘤的新型疫苗的主要方向之一。
生物芯片与微流控芯片的概念
所谓生物芯片(biochip或bioarray ),是根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对DNA、RNA、多肽、蛋白质以及其他生物成分的高通艱速检测。狭义的生物芯片概念是指通过不同方法将生物分子(寡核苷酸' cDNA、genomic DNA、多肽、抗体、
基因组原位杂交的概念
中文名称基因组原位杂交英文名称genomic in situ hybridization;GISH定 义用核酸探针进行原位杂交,确定与探针互补的DNA序列在基因组上的位置。应用学科遗传学(一级学科),基因组学(二级学科)
芯片的制作光导合成技术
原位合成适于制造寡核苷酸和寡肽微点阵芯片,具有合成速度快、相对成本低、便于规模化生产等优点。照相平板印刷技术是平板印刷技术与DNA和多肽固相化学合成技术相结合的产物,可以在预设位点按照预定的序列方便快捷地合成大量寡核苷酸或多肽分子。 在生物芯片研制方面享有盛誉的美国Affymetrix公司运用
生物芯片的基本概念
生物芯片,又称蛋白芯片或基因芯片,它们起源于DNA杂交探针技术与半导体工业技术相结合的结晶。该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA或其他样品分子(例如蛋白,因子或小分子)进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。
蛋白质合成的概念
蛋白质合成是指生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。蛋白质生物合成亦称为翻译(Translation),即把mRNA分子中碱基排列顺序转变为蛋白质或多肽链中的氨基酸排列顺序过程。
合成培养基的概念
合成培养基,亦称综合培养基。是指根据目标培养物所需营养物质的种类和数量,精确设计并由已知成分的纯化学药品人工配制而成的,可精确掌握各成分性质和数量的一类培养基。一般用于研究微生物的形态、营养代谢、分类鉴定、菌种选育、遗传分析等。常用的合成培养基有培养细菌的葡萄糖铵盐培养基,培养放线菌的高氏1号培养基
有机合成的概念和特点
有机合成是指利用化学方法将单质、简单的无机物或简单的有机物制成比较复杂的有机物的过程。例如从氢气和二氧化碳制成甲醇;从乙炔制成氯乙烯,再经聚合而得聚氯乙烯树脂;从苯酚经一系列反应制得己二酸和己二胺,二者再缩合成聚酰胺66纤维。目前大多数的有机物如树脂、橡晈、纤维、染料、药物、燃料、香料等都可通过有机
细胞内原位合成研究获进展
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/509262.shtm人工介导的细胞内化学反应在赋予细胞新功能、加深生命系统理解、发展肿瘤治疗新策略等方面展现出巨大潜力。其中,通过化学手段在细胞内原位合成非天然聚合物进而调控细胞行为的研究尤为受到关注,但
蛋白质芯片的概念和功能
蛋白质芯片是一种高通量的蛋白功能分析技术,可用于蛋白质表达谱分析,研究蛋白质与蛋白质的相互作用,甚至DNA-蛋白质、RNA-蛋白质的相互作用,筛选药物作用的蛋白靶点等。
合成酶的概念和应用
合成酶(synthetase)又称为连接酶(ligase),属于酶学分类中的第六大酶类。合成酶:将伴随三磷酸腺苷(ATP)的分解而催化合成反应的酶称为合成酶。这个过程中,ATP分解为ADP与正磷酸或AMP与焦磷酸。催化反应的机制如下:A + B + ATP ←→ A·B + ADP + Pi 或A
合成化学的概念和方法
合成化学是化学的一个重要分支,主要研究如何通过化学反应和方法,将简单的起始原料转化为具有特定结构和性能的复杂化合物。合成化学的重要性体现在多个方面:创造新物质:为人类提供了各种各样的新材料,如药物、高分子材料、催化剂等,推动了科技进步和社会发展。解决实际问题:例如合成新型药物来治疗疾病,研发高性能材