Antpedia LOGO WIKI资讯

可充电锂电池枝晶难题破解

据最新一期《焦耳》杂志报道,美国麻省理工学院研究人员解释了可充电锂电池枝晶的形成原因以及如何防止其穿过电解液的方法。这一发现最终可能开启一种新型可充电锂电池的设计之门,这种电池比目前的版本更轻、更紧凑、更安全。 到目前为止,可充电锂金属电池的商业用途还很有限,其中一个原因是枝晶。枝晶可在锂表面堆积,渗透到固体电解液中,最终从一个电极交叉到另一个电极,使电池短路。 麻省理工学院的早期研究发现,锂离子固体电解质材料在电池充放电过程中来回穿梭,会导致电极的体积发生变化。这不可避免地在固体电解液中产生应力,它必须与夹在中间的两个电极保持完全接触。“为了沉积这种金属,就必须扩大体积,因为新的质量正在增加。因此,锂电池一侧的体积增加了。如果有哪怕是微小的缺陷存在,就将对这些缺陷产生压力,从而导致开裂。” 研究团队现在发现,这些压力会导致裂缝,从而形成枝晶。事实证明,解决问题的办法是以正确的方向和适当的力量施加压力。 之前,一些研......阅读全文

可充电锂电池枝晶难题破解

  据最新一期《焦耳》杂志报道,美国麻省理工学院研究人员解释了可充电锂电池枝晶的形成原因以及如何防止其穿过电解液的方法。这一发现最终可能开启一种新型可充电锂电池的设计之门,这种电池比目前的版本更轻、更紧凑、更安全。  到目前为止,可充电锂金属电池的商业用途还很有限,其中一个原因是枝晶。枝晶可在锂表面

非对称凝胶电解质助力无枝晶金属锂电池研究获进展

  具有高理论比容量、低氧化还原电位的金属锂负极,有望助力下一代高能量电池的实现。然而,液态电解液体系中金属锂负极的枝晶问题饱受诟病。枝晶生长不但能够导致锂的不可逆容量损失,还可能引发电池短路乃至爆炸。科学家们对枝晶生长机理进行了广泛研究,其中得到广泛认可的Chazalviel模型指出,枝晶成核时间

新型荧光探针区分锂枝晶和“死锂”

  随着经济全球化以及科技的快速发展,人类对能源的需求日益增加,尤其是近年来电动汽车和移动电子设备的蓬勃发展,高能量密度储能材料成为科学研究的焦点。尽管传统的以石墨为负极材料的插层式锂离子电池在电子设备产品市场中占据重要地位,然而它的能量密度已经接近其上限,逐渐无法满足消费者的使用需求。与插层式的锂

科学家原位精准测定锂枝晶生长机理

AFM—ETEM纳米电化学测试平台,可实现原位观测纳米固态电池中锂枝晶生长机制及其力学性能和力—电耦合精准定量测量。  1月6日,Nature Nanotechnology发表了燕山大学亚稳材料制备技术与科学国家重点实验室教授黄建宇、沈同德与国内外科学家合作的一项研究论文,题为Lithium whi

使用金属锂作为锂离子电池的负极材料需要克服两个难题

困扰金属锂负极的主要问题是锂枝晶,在循环过程中,由于局部极化的因素,使得金属锂表面生长锂枝晶,当锂枝晶生长到一定程度的时候就可能穿透隔膜,引发安全问题,此外如果锂枝晶发生断裂,就会形成“死锂”,造成电池容量损失,因此锂枝晶是阻碍金属锂负极应用的zui大障碍。 金属锂可完美替代石墨,做锂离子电池的负极

智能所双金属纳米枝晶生长机理研究取得新进展

  利用铜与银离子的置换反应生长纳米银枝状晶已被广泛接受,但是在微纳尺度下的枝晶生长过程与机理还有待进一步深入探索。中科院合肥物质科学研究院智能所和合肥微尺度物质科学国家实验室在此领域联合开展科研并取得进展,有关成果于4月1日发表在国际纳米材料领域知名期刊《微尺度》(Small, 2

枝晶消除剂——”新型电解质“带着电池一起飞

  太平洋西北国家实验室的物理学家Jason Zhang和他的同事们开发出一种新型电解质,使锂硫,锂金属和锂空电池的效率工作达到99%,同时具有高电流密度,且不会生长使充电电池短路的锂枝晶。  图片展示的是两幅扫描电子显微镜图像:a、说明传统的电解质如何造成枝晶生长;b、PNNL研发的新型电解质,生

福州大学ESM:界面过程控制实现无枝晶锌离子电池

  水系锌离子电池中锌金属的界面反应复杂且不稳定,电解质的加速消耗和局部pH的变化容易造成了树状枝晶的快速生长以及副反应发生。这一问题会对电池不可避免的危害,阻碍了锌离子电池的发展。使用电解质添加剂稳定锌金属表面是一种简单有效的方法,因此探索稳定有效的添加剂,以及解决枝晶和副反应问题的基本原理就尤为

您的锂电池安全吗?---电子显微镜告诉您

  美国能源部橡树岭国家实验室的科学家们已经得到了锂枝晶形成的纳米级图像,这项成果将有助于解决锂电池长期存在的性能和安全问题。  美国能源部橡树岭国家实验室的科学家拍摄到了第一张锂枝晶形成的实时纳米级图像。锂枝晶结构的存在通常会降低电池的使用性能,借助电子显微镜,橡树岭国家实验室

锂电池“长寿”密码找到

  锂电池在使用过程中会产生枝晶,枝晶断裂不仅会导致电池容量衰减,寿命打折,还可能刺透隔膜使电池短路起火引发安全问题。南开大学梁嘉杰、陈永胜教授课题组与江苏师范大学赖超课题组合作提出了解决这一问题的新优化策略,成功制备了具有多级结构的银纳米线—石墨烯三维多孔载体,并负载金属锂作为复合负极材料。这一载