高能磷酸键化合物的介绍
生命体内最常见、最重要的高能磷酸化合物——ATP【三磷酸腺苷】(Adenosine triphosphate) 在生物化学中,三磷酸腺苷是一种核苷酸,作为细胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。 ATP是三磷酸腺苷的英文名称缩写。ATP分子的结构是可以简写成A-P~P~P,其中A代表腺苷,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键,高能磷酸键断裂时,大量的能量会释放出来。ATP可以水解,这实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时释放的能量多达30.54kJ/mol,所以说ATP是细胞内一种高能磷酸化合物。......阅读全文
细胞化学词汇磷酸二酯键
磷酸二酯键是一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。磷酸二酯键成了两个醇之间的桥梁。例如前一个核苷酸的羰基中的3碳上'—OH(羟基)和后一个核苷酸的5'—磷酸基形成酯键,此处的磷酸基同时与前后两个羟基形成酯键,故称磷酸二酯键。依次连下去,形成多核苷酸链,即核酸大
关于共价键的键参数的介绍
1、键长(bond length) 键长指两个成键原子的平衡核间距离,是了解分子结构的基本构型参数,也是了解化学键强弱和性质的参数。 对于由相同的A和B两个原子组成的化学键,键长值小,键强; 键的数目多,键长值小。 在实际的分子中,由于受共轭效应、空间阻碍效应和相邻基团电负性的影响,同一种化学
共价键的结构和键参数介绍
1、键长(bond length)键长指两个成键原子的平衡核间距离,是了解分子结构的基本构型参数,也是了解化学键强弱和性质的参数。 对于由相同的A和B两个原子组成的化学键,键长值小,键强; 键的数目多,键长值小。 在实际的分子中,由于受共轭效应、空间阻碍效应和相邻基团电负性的影响,同一种化学键键长还
腺苷三磷酸酶(ATP酶)的简介
ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍存在的一种高能磷酸化合物。高能磷酸化合物是指水解时释放的能量在20.92kJ/mol(千焦每摩尔)以上的磷酸化合物,ATP水解时释放的能量高达30.54kJ/mol。ATP的分子式可以简写成A-P~P~P。简式中的A代表腺苷,P代表磷酸基团,
三磷酸腺苷酶的功能简介
ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍存在的一种高能磷酸化合物。高能磷酸化合物是指水解时释放的能量在20.92kJ/mol(千焦每摩尔)以上的磷酸化合物,ATP水解时释放的能量高达30.54kJ/mol。ATP的分子式可以简写成A-P~P~P。简式中的A代表腺苷,P代表磷酸基团,~代
什么是ATP?
生命体内最常见、最重要的高能磷酸化合物——ATP【三磷酸腺苷】(Adenosine triphosphate)在生物化学中,三磷酸腺苷是一种核苷酸,作为细胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。ATP是三磷酸腺苷的英文名称缩写。ATP分子的结构是可以简写成A-
腺嘌呤核苷三磷酸的分子简式介绍
ATP的元素组成为:C、H、O、N、P,分子简式A-P~P~P,式中的A表示腺苷,T表示三个(英文的triple的开头字母T),P代表磷酸基团,“-”表示普通的磷酸键,“~”代表一种特殊的化学键,称为高能磷酸键(能量大于29.32kJ/mol的磷酸键称为高能磷酸键)。它有2个高能磷酸键,1个普通
关于三磷酸腺苷的分子简式介绍
ATP的元素组成为:C、H、O、N、P,分子简式A-P~P~P,式中的A表示腺苷,T表示三个(英文的triple的开头字母T),P代表磷酸基团,“-”表示普通的磷酸键,“~”代表一种特殊的化学键,称为高能磷酸键(能量大于29.32kJ/mol的磷酸键称为高能磷酸键)。它有2个高能磷酸键,1个普通
关于三磷酸腺苷的分子简式介绍
ATP的元素组成为:C、H、O、N、P,分子简式A-P~P~P,式中的A表示腺苷,T表示三个(英文的triple的开头字母T),P代表磷酸基团,“-”表示普通的磷酸键,“~”代表一种特殊的化学键,称为高能磷酸键(能量大于29.32kJ/mol的磷酸键称为高能磷酸键)。它有2个高能磷酸键,1个普通
细胞化学基础腺嘌呤核苷三磷酸物质特性
ATP的元素组成为:C、H、O、N、P,分子简式A-P~P~P,式中的A表示腺苷,T表示三个(英文的triple的开头字母T),P代表磷酸基团,“-”表示普通的磷酸键,“~”代表一种特殊的化学键,称为高能磷酸键(能量大于29.32kJ/mol的磷酸键称为高能磷酸键)。它有2个高能磷酸键,1个普通磷酸
关于ATP酶的基本内容介绍
ATP酶又称为三磷酸腺苷酶,是一类能将三磷酸腺苷(ATP)催化水解为二磷酸腺苷(ADP)和磷酸根离子的酶,这是一个释放能量的反应。在大多数情况下,能量可以通过传递而被用于驱动另一个需要能量的化学反应。这一过程被所有已知的生命形式广泛利用。 ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍
ATP水解的基本内容介绍
在ATP的结构式中可以看出,腺嘌呤与核糖结合成腺苷,腺苷通过核糖中的第5位羟基,与3个相连的磷酸基团结合形成ATP。ATP中两个磷酸基团之间(也就是P与P之间)用“~”表示的化学键是高能磷酸键。高能磷酸键水解时,释放出的能量是正常的化学键的2倍以上。例如,ATP末端磷酸基团水解时,释放出的能量是
知识讲堂之ATP荧光检测仪的原理
腺嘌呤核苷三磷酸(简称三磷酸腺苷)是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸基团组成。又称腺苷三磷酸,简称ATP。腺苷三磷酸(ATP adenosine triphosphate)是由腺嘌呤、核糖和3个磷酸基团连接而成,水解时释放出能量较多,是生物体内最直接的能量来源。
烟酰胺腺嘌呤二核苷酸磷酸的化合物介绍
NADPH是最终电子受体NADP+接受电子后的产物。NAD+和NADP+:即烟酰胺腺嘌呤二核苷酸(NAD+,辅酶Ⅰ)和烟酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶Ⅱ,是NADPH的氧化形式)。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用。NADPH通常作为生物合成的还原剂,并不
什么是ATP?ATP的生理作用是什么?
ATP的元素组成为:C、H、O、N、P,分子简式A-P~P~P,式中的A表示腺苷,T表示三个(英文的triple的开头字母T),P代表磷酸基团,“-”表示普通的磷酸键,“~”代表一种特殊的化学键,称为高能磷酸键(能量大于29.32kJ/mol的磷酸键称为高能磷酸键)。它有2个高能磷酸键,1个普通磷酸
Nature:首次构建出制造含硼碳键化合物的细菌
一项新的研究中,美国加州理工学院化学工程、生物工程与生物化学教授Frances Arnold博士和她的团队构建出首次能够制造含有硼-碳键(B-C)的化合物的细菌。在此之前,这些硼-碳键仅来自化学家的实验室,并不能够由任何已知的生命形式产生。相关研究结果发表在2017年12月7日的Nature期刊
有机化合物中碳原子的成键特点
碳原子最外层有4个电子,不易失去或获得电子而形成阳离子或阴离子。碳原子通过共价键与氢、氧、氮、硫、磷等多种非金属形成共价化合物。由于碳原子成键的特点,每个碳原子不仅能与氢原子或其他原子形成4个共价键,而且碳原子之间也能以共价键相结合。碳原子间不仅可以形成稳定的单键,还可以形成稳定的双键或三键。多个碳
关于高能电池的分类介绍
1、以镁作负极活性物质的镁干高能电池:其结构与锌-锰干电池基本相同。镁的标准电极电势比较低,电化学当量小,具备了作为高能电池负极活性物质的优良条件。例如镁-锰干电池的实际比能量是锌-锰干电池的4倍,工作时电压平稳,在低温下也具有较好的工作能力,并且能耐高温贮存。其缺点是有电压滞后现象(接通后需要
共价键按成键过程分类介绍
1、一般共价键 一般共价键有时也称“正常共价键”,是为了和“配位共价键”进行区分时使用的概念,指成键时两个原子各自提供一个未成对电子形成的共价键。 2、配位共价键(coordinate covalent bond) 配位共价键简称“配位键”是指两原子的成键电子全部由一个原子提供所形成的共价
共价键按成键方式分类介绍
一、σ键(sigma bond) 由两个原子轨道沿轨道对称轴方向相互重叠导致电子在核间出现概率增大而形成的共价键,叫做σ键,可以简记为“头碰头”σ键属于定域键,它可以是一般共价键,也可以是配位共价键。一般的单键都是σ键。原子轨道发生杂化后形成的共价键也是σ键。由于σ键是沿轨道对称轴方向形成的,
ATP与ADP的区别
ATP比ADP多一根高能磷酸键和一个磷酸基团。 ATP(腺嘌呤核苷三磷酸)是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸组成,ADP由一分子腺苷与两个相连的磷酸根组成的化合物,在生物体内通常为ATP水解失去一个磷酸根,即断裂一个高能磷酸键,并释放能量后的产物。 两者转化关系:A
价键理论氢分子中的化学键的介绍
量子力学计算表明,两个具有电子构型的H彼此靠近,两个1s电子以自旋相反的方式形成电子对,使体系的能量降低。吸热,即破坏H2的键要吸热(吸收能量),此热量D的大小与H2 分子中的键能有关。计算还表明,若两个1s电子保持以相同自旋的方式,则r越小,V越大。此时,不形成化学键。H2中的化学键可以认为是
关于烟酰胺腺嘌呤二核苷酸磷酸的化合物的介绍
NADPH是最终电子受体NADP+接受电子后的产物。 NAD+和NADP+:即烟酰胺腺嘌呤二核苷酸(NAD+,辅酶Ⅰ)和烟酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶Ⅱ,是NADPH的氧化形式)。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用。 NADPH通常作为生物合成的
生物细胞分子的常见基团
(一)羟基-OH 很多有机分子上含有羟基-OH,如醇、糖、核酸、蛋白质等。“羟”的字和音都由“氢氧”二字拼合而成。羟基与水有某些相似的性质,羟基是典型的极性基团,与水可形成氢键,因此,分子上羟基越多,亲水性就越大。羟基与电负性大的原子如-NH中的氮能形成氢键,氢键在维持蛋白质、核酸等大分子的空
具有超高能量密度的纳米磷酸盐锂电池
A123的高效能纳米磷酸盐8482;锂电池,拥有大功率和高能量密度传输能力,安全性能高,电池寿命长,比其他同类电池轻,包装更加紧密。随着时间的推移,纳米磷酸盐8482;锂电池的自放电量始终保持在很小值。 俄亥俄州子弹头电动流线型火车使用A123系统的蓄电池,创下了每小时307.66英里的世
前方高能!岛津全氟化合物多重解决方案强势来袭
全氟化合物是当前环境中备受关注的新污染物之一,包括全氟辛基磺酸(PFOS)和全氟辛烷磺酸盐(PFOA)等。全氟化合物极难降解,容易在环境中长期存在,对人类健康和生态环境均造成潜在的风险。 HJ 1333-2023《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》、
磷酸肌酸化合物的基本性质
中文名称:磷酸肌酸 中文别名:N-[亚氨基(膦氨基)甲基]-N-甲基甘氨酸 英文名称:Creatine phosphate; 分子式:C4H10N3O5P 分子量:211.113 精确质量:211.03600 PSA:143.76000
磷酸肌酸化合物的基本性质
中文名称:磷酸肌酸中文别名:N-[亚氨基(膦氨基)甲基]-N-甲基甘氨酸英文名称:Creatine phosphate;分子式:C4H10N3O5P分子量:211.113精确质量:211.03600PSA:143.76000
磷酸肌酸化合物的药理作用
磷酸肌酸的主要活性成分是磷酸肌酸,磷酸肌酸担当着补充腺苷三磷酸的能量储备的作用。外源性的磷酸肌酸能够维持细胞的高能磷酸的水平。
磷酸肌酸化合物的物化性质
密度:1.83 g/cm3沸点:449.1 at 760 mmHg闪点:225.4ºC折射率:1.626水溶解性:几乎不溶