科学家建立基于膜透过荧光蛋白的邻近细胞标记技术

1月3日,《美国国家科学院院刊》(PNAS)发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)周斌组和复旦大学附属中山医院教授王立新合作完成的研究成果(Genetic dissection of intercellular interactions in vivo by membrane-permeable protein)。该研究利用表达膜透过性荧光蛋白的遗传工具小鼠,建立了体内邻近细胞标记技术,并利用该技术揭示了肝脏不同区域中内皮细胞的异质性。 细胞之间的相互作用对于多细胞生物体生长发育、稳态维持以及损伤修复等过程至关重要,但关于监测体内细胞互作的遗传学技术鲜有报道。当前的遗传学手段基本上是针对特定细胞自身进行操作,无法深入研究细胞之间的互作。因此,建立新型邻近细胞标记技术对剖析生物体内细胞间互作及功能具有重要意义。 sLP-mCh是脂溶性标签连接mCherry的融合荧光蛋白(Ombrato et......阅读全文

关于荧光蛋白的简介

  荧光蛋白在某种定义下可以说是革新了生物学研究——运用荧光蛋白可以观测到细胞的活动,可以标记表达蛋白,可以进行深入的蛋白质组学实验等等。特别是在癌症研究的过程中,由于荧光蛋白的出现使得科学家们能够观测到肿瘤细胞的具体活动,比如肿瘤细胞的成长、入侵、转移和新生。

GFP:荧光蛋白的起源

     绿色荧光蛋白(简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。GFP的荧光非常稳定,在激发光照射下,其抗光漂白能力比荧光素强很多。因此GFP及其变种被广泛地用作分子标记;此外,GFP还被用作砷和一些重金属的传感器。       1962年,下村

绿色荧光蛋白GFP性质

  GFP荧光极其稳定,在激发光照射下,GFP抗光漂白(Photobleaching)能力比荧光素(fluorescein)强,特别在450~490nm蓝光波长下更稳定。  GFP需要在氧化状态下产生荧光,强还原剂能使GFP转变为非荧光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而

什么是绿色荧光蛋白?

  绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,负责发光的基团位于桶中央,因此,绿色荧光蛋白可形象地比喻成一个装有色素的“油漆桶”。装在“桶”中的发光基团对蓝色光照特别敏感。当它受到蓝光照射时,会吸收蓝光的部分能量,然后发射出绿色的荧光。利用这一性质,生物学家们可以用绿色荧光蛋白来标记几乎任何生物分

绿色荧光蛋白的应用

由于荧光蛋白能稳定在后代遗传,并且能根据启动子特异性地表达,在需要定量或其他实验中慢慢取代了传统的化学染料。更多地,荧光蛋白被改造成了不同的新工具,既提供了解决问题的新思路,也可能带来更多有价值的新问题。

荧光蛋白的发光原理

生命的颜色在海洋中,栖息着一类美丽而神奇的生物——水母。水母是一类古老的水生无脊椎软体动物。多数水母拥有颜色绚丽的伞性身躯及自体发光的能力,可散发出点点淡蓝色荧光,与摇曳的海水相映成辉,常引人无限遐想。没有人知道水母发光的能力是如何进化而来的,这些美丽的海洋精灵遍布在世界各地的海洋中,如繁星般点缀着

黄色荧光蛋白的概念

黄色荧光蛋白(Yellow Fluorescent Protein ,YFP)可以看做绿色荧光蛋白的一种突变体,最初来源于维多利亚多管水母( Aequorea victoria)。相对于绿色荧光蛋白,其荧光向红色光谱偏移,而这主要是由于蛋白203位苏氨酸变为酪氨酸。其最大激发波长为514 nm,最大

什么是绿色荧光蛋白

绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,负责发光的基团位于桶中央,因此,绿色荧光蛋白可形象地比喻成一个装有色素的“油漆桶”。装在“桶”中的发光基团对蓝色光照特别敏感。当它受到蓝光照射时,会吸收蓝光的部分能量,然后发射出绿色的荧光。利用这一性质,生物学家们可以用绿色荧光蛋白来标记几乎任何生物分子或

黄色荧光蛋白的应用

像绿色荧光蛋白一样,YFP是细胞生物学和分子生物学中一种非常常用的报告基因。目前,有三种改良的黄色荧光蛋白: Citrine, Venus, and Ypet。这三种改良的蛋白荧光更亮,更稳定,而且成熟更快,因此应用广泛。黄色荧光蛋白最常用于荧光共振能量转移,作为荧光能量的接受体(acceptor)

荧光蛋白的发光原理

绿色荧光蛋白是从水母体内发现的发光蛋白。分子质量为26kda,由238个氨基酸构成,第65~67位氨基酸形成发光团,是主要发光的位置。其发光团的形成不具物种专一性,发出荧光稳定,且不需依赖任何辅因子或其他基质而发光。绿色荧光蛋白基因转化入宿主细胞后很稳定,对多数宿主的生理无影响,是常用的报道基因。荧

血小板膜糖蛋白测定的原理

  血小板膜糖蛋白分为质膜糖蛋白和颗粒膜糖蛋白,前者包括GPⅠb-Ⅸ-Ⅴ、GPⅡb-Ⅲa、GPⅠa-Ⅱa等,后者包括CD62P和CD63.CD62P又称P-选择素、GMPl40,在未活化的血小板上,CD62P分子仅表达于颗粒膜上。活化后,CD62P分子在质膜呈高表达。CD63在静止血小板仅分布于溶酶

蛋白膜阻氧性能的测试方法

1、意义蛋白膜,顾名思义,是以动物分离蛋白或植物分离蛋白为主要原料,并加入增塑剂、交联剂等添加剂制成,常见的蛋白膜有乳清蛋白膜、小麦面筋蛋白膜、大豆分离蛋白膜、玉米醇溶蛋白膜、花生分离蛋白膜等,根据蛋白膜的类型及应用领域不同,成膜方式包括浇铸成膜、涂布或喷雾成膜、挤压成膜等。蛋白膜是一种可食用、可降

透过涂层测量金属厚度

   应用:   精确测量金属管道、压力容器、横梁、船体以及其他带油漆层或类似涂层构造物的剩余壁厚。   背景:   在许多工业和石化产品维护情况中,对那些经常遭受到腐蚀穿透一层或多层油漆层的金属测量其剩余厚度是非常需要的。采用常规的超声测厚仪,漆层或类似涂层的存在会产生测量错误,典型地,由

蛋白质的内源性荧光与荧光探针

  利用荧光光谱法研究蛋白质一般有两种方法。一是测定蛋白质分子的自身荧光(内源荧光),另一种是当蛋白质本身不能发射荧光时,通过非共价吸附或共价作用向蛋白质分子的特殊部位引入外源荧光(也称荧光探针),然后测定外源荧光物质的荧光。   蛋白质的内源荧光  含有芳香族氨基酸(色氨酸(tryptophan

新型糖肽骨架实现对跨膜受体的荧光检测

  胞表面存在不同种类可识别糖的跨膜受体,并可选择性地与糖类物质作用从而诱发一系列生理及病理学事件。因此,设计并合成可与此类受体高亲和力结合的糖衍生物将有利于靶向释药及特异性疾病标记体系的发展。  基于对肝癌细胞表面脱唾液酸糖蛋白受体(ASGP-R)靶向检测的前期基础(Adv. Mater. 201

色素膜脑膜脑炎的荧光素眼底血管造影检查

  荧光素眼底血管造影检查对诊断伏格特-小柳-原田病有重要价值,在疾病的不同时期,造影的改变可有很大不同。  (1)葡萄膜炎急性期的荧光素眼底血管造影改变:在葡萄膜炎发生一段时间内,通常称为炎症的急性期(实际上包括了后葡萄膜炎期和前葡萄膜受累期),荧光素眼底血管造影检查主要表现为视网膜色素上皮水平的

新型糖肽骨架实现对跨膜受体的荧光检测

  细胞表面存在不同种类可识别糖的跨膜受体,并可选择性地与糖类物质作用从而诱发一系列生理及病理学事件。因此,设计并合成可与此类受体高亲和力结合的糖衍生物将有利于靶向释药及特异性疾病标记体系的发展。  基于对肝癌细胞表面脱唾液酸糖蛋白受体(ASGP-R)靶向检测的前期基础(Adv. Mate

倒置荧光显微镜的原理

高信噪比(S/N),能够捕获极弱荧光世界领先的光学品质——对现代生命科学研究至关重要荧光观察的理想情况是采用最低量的激发光照射捕获高对比度的图像,由此将细胞受损及荧光衰减的机会降至最小。奥林巴斯公司对UIS2系统的物镜进行精密的设计,使用微弱的激发光即可捕获明亮的荧光图像。光透过率进步的同时也提高了

倒置荧光显微镜的原理

高信噪比(S/N),能够捕获极弱荧光世界领先的光学品质——对现代生命科学研究至关重要荧光观察的理想情况是采用最低量的激发光照射捕获高对比度的图像,由此将细胞受损及荧光衰减的机会降至最小。奥林巴斯公司对UIS2系统的物镜进行精密的设计,使用微弱的激发光即可捕获明亮的荧光图像。光透过率进步的同时也提高了

VACV2透气仪检测不同温度下同种PET复合膜的氧气透过量

摘要:在不同的环境条件下,同种包装材料的阻隔性存在一定的差异。为了验证这种差异,本文以包装常用的PET/PE复合膜材料为例,分别测试其在10℃、0%RH与30℃、0%RH下的氧气透过量,试验所采用的检测设备为Labthink兰光VAC-V2 压差法气体渗透仪,并简要介绍了该设备的参数、试验的操作过程

血小板膜糖蛋白自身抗体检测

  【参考范围】1.血小板表面阴性(抗原抗体复合物法)。  2.血清阴性(抗原抗体复合物法)。  【影响因素】1.选择的正常对照血小板必须是“O”型血的供者,以免过多的干扰。  2.“O”型血混合血小板的准备要十分重视。需20人以上的供者,不然将无可比性。

如何选择蛋白印迹实验中的印迹膜?

硝酸纤维素膜(NC膜)是蛋白和核酸杂交最常用的印迹膜,是蛋白印迹实验的标准固相支持物。在低离子转移缓冲液的环境下,大多数带负电荷的蛋白质会与硝酸纤维素膜发生疏水作用而高亲和力的结合在一起,虽然这其中的机制还不是十分清楚,但由于硝酸纤维素膜的这个特性,而且易于封闭非特异性结合,从而得到了广泛的应用。目

膜表面免疫球蛋白(SmIg)检测法

实验概要本实验介绍了B细胞特有的表面标志膜表面免疫球蛋白(SmIg)的检测方法。实验原理膜表面免疫球蛋白(SmIg),是B细胞特有的表面标志,它既是B细胞识别抗原的受体,与相应抗原特异性结合;又是表面抗原,能与相应的抗Ig的抗体结合,故可用荧光标记的抗Ig抗体作免疫荧光镜检,以查出B淋巴细胞。由于B

血小板膜糖蛋白(GP)测定的原理

  血小板膜糖蛋白分为质膜糖蛋白和颗粒膜糖蛋白,前者包括GPⅠb-Ⅸ-Ⅴ、GPⅡb-Ⅲa、GPⅠa-Ⅱa等,后者包括CD62P和CD63。CD62P又称P-选择素、GMPl40,在未活化的血小板上,CD62P分子仅表达于颗粒膜上。活化后,CD62P分子在质膜呈高表达。CD63在静止血小板仅分布于溶酶

如何选择蛋白印迹实验中的印迹膜

  硝酸纤维素膜(NC膜)是蛋白和核酸杂交zui常用的印迹膜,是蛋白印迹实验的标准固相支持物。在低离子转移缓冲液的环境下,大多数带负电荷的蛋白质会与硝酸纤维素膜发生疏水作用而高亲和力的结合在一起,虽然这其中的机制还不是十分清楚,但由于硝酸纤维素膜的这个特性,而且易于封闭非特异性结合,从而得到了广泛的

170KD蛋白转膜用多大电压

电流通过导体(或用电器)的时候,会受到一定的阻力,但在电压的作用下,电流能够克服这种阻力顺利通过导体(或用电器),但遗憾的是,流过串联电阻(或用电器)后,电位(电势)再也没有以前那么高了,它的电位(电势)下降了。而且电阻越大,它两端电位(电势)的变化就越大。所以,把电流流过电阻(或用电器)时,在电阻

红细胞质膜蛋白及膜骨架

  ⒈血影蛋白又称收缩蛋白 (spectrin),是红细胞膜骨架的主要成份,但不是红细胞膜蛋白的成份,约占膜提取蛋白的30%.血影蛋白属红细胞的膜下蛋白,这种蛋白是一种长的,可伸缩的纤维状蛋白,长约100 nm,由两条相似的亚基:β亚基(相对分子质量220kDa)和α亚基(相对分子质量200kDa)

膜表面免疫球蛋白(SmIg)检测法

实验概要本实验介绍了B细胞特有的表面标志膜表面免疫球蛋白(SmIg)的检测方法。实验原理膜表面免疫球蛋白(SmIg),是B细胞特有的表面标志,它既是B细胞识别抗原的受体,与相应抗原特异性结合;又是表面抗原,能与相应的抗Ig的抗体结合,故可用荧光标记的抗Ig抗体作免疫荧光镜检,以查出B淋巴细胞。由于B

LSCM表达荧光蛋白的组织

表达荧光蛋白的组织经冷冻切片制样后,可直接封片,观察并扫描图像,也可配合使用其它荧光染料进行免疫荧光抗体标记和核染色。同时表达GFP 和 RFP 荧光蛋白的组织切片,如还需作免疫荧光抗体标记,应选择可以被 633 nm 和 405 nm 波长激光器激发的荧光染料,如 CY5、Alexa fluor

绿色荧光蛋白的功能介绍

绿色荧光蛋白(Green fluorescent protein,简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。虽然许多其他海洋生物也有类似的绿色荧光蛋白,但传统上,绿色荧光蛋白(GFP)指首先从维多利亚多管发光水母中分离的蛋白质。这种蛋白质最早是由下