激光通信的系统组成
激光通信系统组成设备包括发送和接收两个部分。发送部分主要有激光器、光调制器和光学发射天线。接收部分主要包括光学接收天线、光学滤波器、光探测器。要传送的信息送到与激光器相连的光调制器中,光调制器将信息调制在激光上,通过光学发射天线发送出去。在接收端,光学接收天线将激光信号接收下来,送至光探测器,光探测器将激光信号变为电信号,经放大、解调后变为原来的信息。......阅读全文
金相显微镜系统的系统组成
电脑型金相显微镜:1、金相显微镜2、适配镜 3、摄像器(CCD) 4、A/D(图像采集) 5、计算机数码相机型金相显微镜:1、金相显微镜 2、适配镜 3、数码相机
免疫系统组成
免疫器官 种类:扁桃体、淋巴结、胸腺、脾、骨髓等。 作用:免疫细胞生成、成熟或集中分配的场所。 免疫细胞 发挥免疫作用的细胞。分为淋巴细胞、吞噬细胞等。 淋巴细胞位于淋巴结、血液和淋巴液中,分为T细胞(在胸腺中成熟)和B细胞(在骨髓中成熟)。 免疫活性物质 免疫活性物质是由免疫细胞
无线测温系统组成
无线测温系统由无线温度传感器、测温通信终端(温度接收仪)、温度监测预警工作站三部分组成。 无线温度传感器:测量接触点的温度。主要安装在容易发热的处。每个无线温度传感器具有唯一的ID编号,实际安装使用时记录每个传感器的安装地点,并与编号一起存入温度监测工作站计算机数据库中。传感器每隔一定时间(可
量子通信:绝密的未来通信
量子通信技术基于量子物理学的基本原理,克服了经典加密技术内在的安全隐患,是迄今为止唯一被严格证明是无条件安全的通信方式。为了拓展应用、与现有通信系统兼容以及大量减少成本,需对点对点的通信方式进行组网并充分利用经典通信设施。与此同时,量子克隆技术的出现也使得我们开始重新审视量子通信的安全性问题。量
NASA将展示来自空间站的激光通信
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507809.shtm
光纤通信系统光纤的相关内容
光纤是光信号的传输通道,是光纤通信的关键材料。 光纤由纤芯、包层、涂敷层及外套组成,是一个多层介质结构的对称圆柱体。纤芯的主体是二氧化硅,里面掺有微量的其它材料,用以提高材料的光折射率。纤芯外面有包层,包层与纤芯有不同的光折射率, 纤芯的光折射率较高, 用以保证光信号主要在纤芯里进行传输。 包
光纤通信系统的工作过程相关叙述
发送:CPU 通过专用 IC芯片将并行数据串行化,并根据通信格式插入相应位码(起始、停止、校验位等) ,由输出端 TXD将信号送入光纤接插件(即定插头) ,再由光纤接插件中的光源进行电—光转换,转换后的光信号通过光纤动插头向光纤发送光信号,光信号在光纤中向前传播。 接收:来自光纤的光信号经光纤
“激光+微波”模式,有望解决我国星地通信瓶颈问题
近日,中国科学院空天信息创新研究院利用自主研制成功的500mm口径激光通信地面系统与长光卫星技术股份有限公司所属吉林一号MF02A04星开展了星地激光通信实验,通信速率达到10Gbps(每秒10G比特),所获取的卫星载荷数据质量良好,可满足高标准业务化应用需求。本次实验标志着我国已成功实现星地激
自主创新打造海事卫星通信系统
我国渔船总数达到近100万艘,全国渔业人口约3000万人。在海上生活的广大渔民们,长年看不到电视,打不了电话,甚至遇到险情都无法呼救。27日亮相北京科博会的一套移动卫星通信设备将彻底改变这一局面。 工作人员介绍说,该设备不仅能
日本开发大容量量子保密通信系统
日本东北大学电气通讯研究所与学院大学的研究团队联合开发了世界最高水准的隐秘性(暗号强度)高速大容量光通信系统。该系统首次结合量子噪声保密和量子秘钥分发技术,以接近以前2倍的速度——世界最高速的单信道每秒100GT的速度,成功实现了100公里的量子保密传输,有望实现抵抗网络攻击的极强安全通讯。该成
光纤通信系统要求光检测器
光纤通信系统要求光检测器: (1) 灵敏度高:灵敏度高表示检测器把光功率转变为电流的效率高。在实际的光接收机中,光纤传来的信号及其微弱,有时只有1nw左右。为了得到较大的信号电流,人们希望灵敏度尽可能的高。 (2) 响应速度快:指射入光信号后,马上就有电信号输出;光信号一停,电信号也停止输出
气体激光器的组成部分
气体激光器利用气体作为工作物质产生激光的器件。它由放电管内的激活气体、一对反射镜构成的谐振腔和激励源等三个主要部分组成。主要激励方式有电激励、气动激励、光激励和化学激励等。其中电激励方式最常用。在适当放电条件下,利用电子碰撞激发和能量转移激发等,气体粒子有选择性地被激发到某高能级上,从而形成与某
氮分子激光器的组成结构
氮分子激光器的组成主要包括:电源、传输线、储能电容器、激光腔、充电电感、火花间隙开关。布置结构如图1所示。这是一个工作在大气环境下的简易氮分子激光器的结构图。工作介质为占空气含量约78%的氮气,通过火花间隙的过压触发氮原子跃迁,其脉冲可短至纳秒(ns=10-12s)量级,氮分子激光器工作需要很陡脉冲
氮分子激光器的组成结构
氮分子激光器的组成主要包括:电源、传输线、储能电容器、激光腔、充电电感、火花间隙开关。布置结构如图1所示。这是一个工作在大气环境下的简易氮分子激光器的结构图。工作介质为占空气含量约78%的氮气,通过火花间隙的过压触发氮原子跃迁,其脉冲可短至纳秒(ns=10-12s)量级,氮分子激光器工作需要很陡脉冲
气体激光器的组成部分
气体激光器利用气体作为工作物质产生激光的器件。它由放电管内的激活气体、一对反射镜构成的谐振腔和激励源等三个主要部分组成。主要激励方式有电激励、气动激励、光激励和化学激励等。其中电激励方式最常用。在适当放电条件下,利用电子碰撞激发和能量转移激发等,气体粒子有选择性地被激发到某高能级上,从而形成与某低能
激光粒度仪的粒度组成测试步骤
激光粒度仪的粒度组成测试该如何做? 1.在工具栏中选择“运行”,在“运行”的下拉菜单中选择“运行循环”,出现运行循环对话框。 2.在运行循环对话框中 ①选择:测量补偿、对准、测量本底、测量加料浓度、输入样品信息和输入运行信息等复选框; ②选择:PIDS数据复选框; ③选择泵速(一般为70)
X射线激光器的结构组成
X射线激光器和普通激光器类似,可由驱动源、工作物质和谐振腔三部分组成。驱动源是高功率激光器、高压放电装置甚至核装置等能向工作物质馈送能量的激励装置,普遍采用的是高功率激光器。工作物质是驱动源产生的等离子体,所以这种激光也称为等离子体X射线激光。软X射线激光的光腔由多层膜X射线反射镜、多层膜输出耦合(
激光准直仪的组成和原理
激光准直仪由激光器作为光源的发射系统、光电接收系统及附件三大部分组成。激光准直仪将激光束作为定向发射而在空间形成的一条光束作为准直的基准线,以标定直线的一种工程测量仪器。
激光跟踪仪的组成及工作原理
组成 激光跟踪测量系统(Laser Tracker System)是工业测量系统中一种高精度的大尺寸测量仪器。它集合了激光干涉测距技术、光电探测技术、精密机械技术、计算机及控制技术、现代数值计算理论等各种先进技术,对空间运动目标进行跟踪并实时测量目标的空间三维坐标。它具有高精度、高效率、实时跟
简介浊度仪的系统组成
浊度仪的光学系统由一个钨丝灯、一个用于监测散射光的90°检测器和一个透射光检测器组成。仪器微处理器可以计算来自90°检测器和透射光检测器的信号比率。该比率计算技术可以校正因色度和/或吸光物质(如活性炭)产生的干扰和补偿因灯光强度波动而产生的影响,可以提供长期的校准稳定性。光学系统的设计也可以减少
蠕动泵的系统组成
蠕动泵系统由三个部分组成:蠕动泵驱动器、蠕动泵泵头、蠕动泵泵管。 选择管 作为蠕动泵软管的条件 具有一定弹性,即软管径向受压后能迅速恢复形状 具有一定的耐磨性 具有一定承受压力的能力 不渗漏(气密性好) 吸附性低、耐温性好、不易老化、不溶胀、抗腐蚀、析出物低等 选择泵头 选择单
免疫系统的主要组成
免疫系统是由免疫器官、免疫细胞和免疫活性物质组成的。
细菌鉴定系统的仪器组成
仪器分为硬件和消耗品。①硬件a.阅读器:装载试条的金属托盘,托盘上有两排32孔,可以阅读细菌鉴定和药敏试条,有4个不同的过滤光片,可进行比浊、比色自动辨认试条种类并进行检测。b.中心控制器:中心控制器能从读数器传送并处理数据结果,并可以对人工阅读试条解释结果,建立样本管理文件,进行细菌分布研究和药敏
免疫系统的组成介绍
免疫器官种类:扁桃体、淋巴结、胸腺、脾、骨髓等。作用:免疫细胞生成、成熟或集中分配的场所。免疫细胞发挥免疫作用的细胞。分为淋巴细胞、吞噬细胞等。淋巴细胞位于淋巴结、血液和淋巴液中,分为T细胞(在胸腺中成熟)和B细胞(在骨髓中成熟)。免疫活性物质免疫活性物质是由免疫细胞或其他细胞产生的发挥免疫作用的物
无细胞翻译系统的组成
无细胞系统要包含以下成分:核糖体、各种tRNA、各种氨酰-tRNA合成酶、蛋白质合成需要的起始因子和延伸因子以及终止释放因子、GTP、ATP、20种基本的氨基酸。
电子舌系统的结构组成
电子舌主要由自动进样系统、传感器阵列(sensor arrays)和模式识别系统组成。其中,自动进样器是一个非必需的组成部分,但是在自动进样器的辅助下,仪器自动完成样品的分析可以减轻劳动强度。应用在电子舌中的传感器主要包括电化学传感器、光学传感器、质量传感器和酶传感器(生物传感器)等。电化学传感器又
气质联用的系统组成
气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱的联用以后,这一技术得到了长足的发展。在所有的联用技术中GC-MS联用技术发展最为完善,应用最广泛。气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送
GCMS系统的组成
气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析
GCMS系统的组成
气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析
精准曝气系统的组成
主要有以下6个设备组成:(1)鼓风机 、(2) 阀门、(3) 流量计、 (4)曝气盘/管、 (5)DO 等现场仪表、(6)精确曝气控制柜.1、鼓风机鼓风机是精确曝气系统的气源提供设备,负责提供适合的压力和流量的压缩空气,是整个精确曝气系统的关键设备,没有稳定的气源,就没有整个系统的稳定,更不用说控制